PLUGINS/STRUCTURE
PLUGINS/STRUCTURE = .True. | .False.
Default: PLUGINS/STRUCTURE = .False.
Description: PLUGINS/STRUCTURE calls the Python plugin for the structure interface for each ionic relaxation step
When PLUGINS/STRUCTURE=.TRUE., VASP calls the structure
Python function at the end of each ionic relaxation step.
The primary use-case of this tag is to modify the structure based on the computed energy, force and stress tensor.
Expected inputs
The structure
Python function expects the following inputs,
def structure(constants, additions):
where constants
and additions
and Python dataclasses.
The constants
dataclass consists of the following inputs, listed here with their associated datatypes
number_ions: int number_ion_types: int ion_types: NDArray[np.int32] atomic_numbers: NDArray[np.int32] lattice_vectors: NDArray[np.float64] positions: NDArray[np.float64] POMASS: NDArray[np.float64] total_energy: float forces: NDArray[np.float64] stress: NDArray[np.float64] shape_grid: NDArray[np.float64] charge_density: NDArray[np.float64]
Note that the INCAR tags are capitalized.
number_ions
is the total number of ions listed in the POSCAR file,
number_ion_types
is the number of ion corresponding to each ion type in the convention of the POSCAR file,
ion_types
stores the total number of ion types,
atomic_numbers
contains the atomic number for each atom type,
lattice_vectors
and positions
contain the lattice vectors and positions of the current SCF step
forces
and stress
are the computed forces and stress tensor and charge_density
contains the charge density on the real space grid. shape_grid
is a three dimensional integer array which stores the shape of the real space grid, NGXF, NGYF and NGZF and charge_density
is the charge density on this real space grid.
The additions
dataclass consists of the following modifiable outputs
lattice_vectors: NDArray[np.float64] positions: NDArray[np.float64]
Modifying quantities
Modify the quantities listed in additions by adding to them.
def structure(constants, additions) additions.positions += np.ones((constants.number_ions,3))
Mind: You may not make modifications to quantities in constants
|