The bare Coulomb operator

in the unscreened HF exchange has a representation in the reciprocal space that is given by

It has a singularity at
, and to alleviate this issue and to improve the convergence of the exact exchange with respect to the supercell size (or the k-point mesh density) different methods have been proposed: auxiliary function [1], probe-charge Ewald [2] (HFALPHA), and Coulomb truncation[3] (HFRCUT). These mostly involve modifying the Coulomb Kernel in a way that yields the same result as the unmodified kernel in the limit of large supercell sizes. These methods, which can also be applied to screened Coulomb operators, are described below.
Auxiliary function
Probe-charge Ewald
Truncation
In this method the bare Coulomb operator
is truncated by multiplying it by the step function
, and in the reciprocal this leads to

whose value at
is finite and is given by
. The screened Coulomb operators

and

have representations in the reciprocal space that are given by

and

respectively. Thus, the screened potentials have no singularity at
. Nevertheless, it is still beneficial for accelerating the convergence with respect to the number of k-points to multiply these screened operators by
, which in the reciprocal space gives

and

respectively, with the following values at
:

and

Related tags and articles
HFRCUT,
Hybrid_functionals: formalism,
Downsampling_of_the_Hartree-Fock_operator
References