Bandstructure of Si in GW (VASP2WANNIER90)
Description: calculation of the bandstructure of Si in GW using the VASP2WANNIER90 interface.
Mind: The procedure to compute bandstructure in GW using V2W is almost identical to the corresponding HSE one described in Si bandstructure.
To do GW calculations we have to follow a 3-step procedure.
Step 1: a DFT groundstate calculation
Everything starts with a standard DFT groundstate calculation (in this case PBE).
- INCAR
ISMEAR = 0 SIGMA = 0.05 GGA = PE
- KPOINTS
6x6x6 0 G 6 6 6 0 0 0
- POSCAR
system Si 5.430 0.5 0.5 0.0 0.0 0.5 0.5 0.5 0.0 0.5 2 cart 0.00 0.00 0.00 0.25 0.25 0.25
Step 2: obtain DFT virtual orbitals
To obtain a WAVECAR file with a reasonable number of virtual orbitals (50-100 per atom) we need to restart from the previous groundstate calculation with ALGO=Exact, and manually set the number of bands by means of the NBANDS-tag. To obtain the corresponding WAVEDER file we additionally specify LOPTICS=.TRUE.
- INCAR
ALGO = Exact NBANDS = 64 LOPTICS = .TRUE. NEDOS = 2000 ## you might try #LPEAD = .TRUE. ISMEAR = 0 SIGMA = 0.05 GGA = PE
Mind: make a copy of your WAVECAR and WAVEDER files, as we will repeatedly need them in the following. For instance
cp WAVECAR WAVECAR.LOPTICS cp WAVEDER WAVEDER.LOPTICS
Step 3: the actual GW calculation
Restart from the WAVECAR and WAVEDER files of the previous calculation, with
- INCAR
## Frequency dependent dielectric tensor including ## local field effects within the RPA (default) or ## including changes in the DFT xc-potential (LRPA=.FALSE.). ## N.B.: beware one first has to have done a ## calculation with ALGO=Exact and LOPTICS=.TRUE. ## and a reasonable number of virtual states (see above) ALGO = GW0 ; LSPECTRAL = .TRUE. ; NOMEGA = 50 #LRPA = .FALSE. ## be sure to take the same number of bands as for ## the LOPTICS=.TRUE. calculation, otherwise the ## WAVEDER file is not read correctly NBANDS = 64
Beyond the random-phase-approximation
To include local field effects beyond the random-phase-approximation in the description of the frequency dependent dielectric response function (local field effects in DFT) add the following line to your INCAR file:
LRPA = .FALSE.
and again restart from the WAVECAR and WAVEDER files from step 2.
Download
To the list of examples or to the main page