The probability density for a geometric parameter ξ of the system driven by a Hamiltonian:
with T(p), and V(q) being kinetic, and potential energies, respectively, can be written as:
The term stands for a thermal average of quantity X evaluated for the system driven by the Hamiltonian H.
If the system is modified by adding a bias potential acting only on a selected internal parameter of the system ξ=ξ(q), the Hamiltonian takes a form:
and the probability density of ξ in the biased ensemble is:
It can be shown that the biased and unbiased averages are related via a simple formula:
More generally, an observable :
can be expressed in terms of thermal averages within the biased ensemble:
Simulation methods such as umbrella sampling[1] use a bias potential to enhance sampling of ξ in regions with low P(ξi) such as transition regions of chemical
reactions.
The correct distributions are recovered afterwards using the equation for above.
A more detailed description of the method can be found in Ref.[2].
Biased molecular dynamics can be used also to introduce soft geometric constraints in which the controlled geometric parameter is not strictly constant, instead it oscillates in a narrow interval
of values.
- For a biased molecular dynamics run with Andersen thermostat, one has to:
- Set the standard MD-related tags: IBRION=0, TEBEG, POTIM, and NSW
- Set MDALGO=11, and choose an appropriate setting for ANDERSEN_PROB
- In order to avoid updating of the bias potential, set HILLS_BIN=NSW
- Define collective variables in the ICONST-file, and set the STATUS parameter for the collective variables to 5
- Define the bias potential in the PENALTYPOT-file
The values of all collective variables for each MD step are listed in the REPORT-file, check the lines after the string Metadynamics.
- ↑ Cite error: Invalid
<ref>
tag; no text was provided for refs named Torrie77
- ↑ Cite error: Invalid
<ref>
tag; no text was provided for refs named FrenkelSmit