GGA

From VASP Wiki
Revision as of 12:25, 16 October 2024 by Ftran (talk | contribs)

GGA = PE | RP | PS | AM | LIBXC | ...
Default: GGA = exchange-correlation functional in accordance with the POTCAR file 

Description: GGA specifies a LDA or GGA exchange-correlation functional.


This tag was added to perform GGA calculations with pseudopotentials generated with conventional LDA reference configurations.

Important: VASP recalculates the exchange-correlation energy inside the PAW sphere and corrects the atomic energies given by the POTCAR file. For this to work, the original LEXCH tag must not be modified in the POTCAR file.

A few points should be noted:

  • The LIBXC option (or just LI) allows to use a LDA or GGA functional from the library of exchange-correlation functionals Libxc[1][2][3]. Along with GGA=LIBXC, it is also necessary to specify the LIBXC1 and LIBXC2 tags that specify the particular functional. Note that it is necessary to have Libxc >= 5.2.0 installed and VASP.6.3.0 or higher compiled with precompiler options.
  • When the OR, BO, MK, ML or CX GGA is used in combination with the nonlocal vdW-DF functional of Dion et al.[4], the GGA component of the correlation should in principle be turned off with AGGAC=0 (see nonlocal vdW-DF functionals).

The possible options for the GGA tag are:

LDA functionals:
CA (or PZ) Slater exchange[5] + Perdew-Zunger parametrization of Ceperley-Alder Monte-Carlo correlation data[6][7]
SL Slater exchange only[5], available since VASP.6.4.3
CA_C (or PZ_C) Correlation-only Perdew-Zunger parametrization of Ceperley-Alder Monte-Carlo correlation data[6][7], available since VASP.6.4.3
VW Slater exchange[5] + Vosko-Wilk-Nusair correlation (VWN5)[8]
HL Slater exchange[5] + Hedin-Lundqvist correlation[9]
WI Slater exchange[5] + Wigner correlation[10] (Eq. (3.2) in Ref. [11])
LIBXC (or LI) Any LDA from Libxc[1][2][3] (the LIBXC1 and LIBXC2 tags are also required)
GGA functionals:
LIBXC (or LI) Any GGA from Libxc[1][2][3] (the LIBXC1 and LIBXC2 tags are also required)
91 Perdew-Wang (PW91)[12]
PE Perdew-Burke-Ernzerhof (PBE)[13]
PBE_X Exchange-only Perdew-Burke-Ernzerhof (PBEx)[13], available since VASP.6.4.3
PBE_C Correlation-only Perdew-Burke-Ernzerhof (PBEc)[13], available since VASP.6.4.3
RE Revised PBE from Zhang and Yang (revPBE)[14]
RP Revised PBE from Hammer et al. (RPBE)[15]
PS Revised PBE for solids (PBEsol)[16]
AM Armiento-Mattson (AM05)[17][18][19]
B3 B3LYP[20] with VWN3[8] for LDA correlation
B5 B3LYP[20] with VWN5[8] for LDA correlation
Designed to be combined with nonlocal vdW-DF functionals:
OR optPBE exchange[21] + PBE correlation[13]
BO (with PARAM1=0.1833333333 and PARAM2=0.22) optB88 exchange[21] + PBE correlation[13]
MK optB86b exchange[22] + PBE correlation[13]
ML PW86R exchange[23] + PBE correlation[13]
CX CX (LV-PW86r) exchange[24] + PBE correlation[13]
BF BEEF (requires VASP compiled with -Dlibbeef)[25]


Related tags and articles

LIBXC1, LIBXC2, ALDAX, ALDAC, AGGAX, AGGAC, METAGGA, XC

Examples that use this tag

References

  1. a b c M. A. L. Marques, M. J. T. Oliveira, and T. Burnus, Comput. Phys. Commun., 183, 2272 (2012).
  2. a b c S. Lehtola, C. Steigemann, M. J. T. Oliveira, and M. A. L. Marques, SoftwareX, 7, 1 (2018).
  3. a b c https://libxc.gitlab.io
  4. M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
  5. a b c d e P. A. M. Dirac, Math. Proc. Cambridge Philos. Soc. 26, 376 (1930).
  6. a b D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
  7. a b J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
  8. a b c S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
  9. L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (1971).
  10. E. Wigner, Trans. Faraday Soc. 34, 678 (1938).
  11. D. Pines, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic, New York, 1955), Vol. I, p. 367.
  12. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
  13. a b c d e f g h J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).
  14. Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).
  15. B. Hammer, L. B. Hansen, and J. K. Nørskov, Phys. Rev. B 59, 7413 (1999).
  16. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).
  17. R. Armiento and A. E. Mattsson, Phys. Rev. B 72, 085108 (2005).
  18. A. E. Mattsson, R. Armiento, J. Paier, G. Kresse, J. M. Wills, and T. R. Mattsson, J. Chem. Phys. 128, 084714 (2008).
  19. A. E. Mattsson and R. Armiento, Phys. Rev. B 79, 155101 (2009).
  20. a b P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
  21. a b J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010).
  22. J. Klimeš, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011).
  23. K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101(R) (2010).
  24. K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412 (2014).
  25. J. Wellendorff, K. T. Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis, Jens K. Nørskov, T. Bligaard, and K. W. Jacobsen, Phys. Rev. B 85, 235149 (2012).