Constraining local magnetic moments
Overview > fcc Ni (revisited) > NiO > NiO LSDA+U > Spin-orbit coupling in a Ni monolayer > Spin-orbit coupling in a Fe monolayer >constraining local magnetic moments > List of tutorials
Task
Constraining the local magnetic moments on an Fe dimer.
Input
POSCAR
Fe dimer 1.00000000000000000 8.0000000000000000 0.0000000000000000 0.0000000000000000 0.0000000000000000 8.0000000000000000 0.0000000000000000 0.0000000000000000 0.0000000000000000 8.0000000000000000 2 Cartesian 3.00 0.00 0.00 5.00 0.00 0.00
INCAR
SYSTEM = Fe dimer ISTART = 0 ISYM = 0 LNONCOLLINEAR = .TRUE. MAGMOM = 0 0 3 0 0 3 VOSKOWN = 1 LORBIT = 11 ! mix slowly when increasing LAMBDA # AMIX = 0.1 # BMIX = 0.00001 # AMIX_MAG = 0.2 # BMIX_MAG = 0.00001 # I_CONSTRAINED_M = 1 # RWIGS = 1.0 # LAMBDA = 10 # M_CONSTR = 0 0 1 0 0 1
- Symmetry is switched off (ISYM=0).
- Initially moments for ferromagnetic calculation are initialized.
KPOINTS
k-points 0 Monkhorst Pack 1 1 1 0. 0. 0.
- A single k point in the calculation is sufficient.
Calculation
- By using the initial ferromagnetic initialization of MAGMOM = 0 0 3 0 0 3 we get the following magnetic moments in the OSZICAR file:
... DAV: 20 -0.929676054634E+01 -0.26101E-03 -0.16780E-03 60 0.102E-01 0.537E-02 DAV: 21 -0.929679955346E+01 -0.39007E-04 -0.30319E-04 60 0.590E-02 1 F= -.92967996E+01 E0= -.93047629E+01 d E =0.238900E-01 mag= -0.0006 -0.0003 6.0537
- By using a different initial magnetization of MAGMOM = 0 0 3 0 2 2 the system converges to a ferromagnetic solution:
magnetization (y) magnetization (z) # of ion s p d tot # of ion s p d tot ---------------------------------------- ---------------------------------------- 1 0.018 -0.001 1.071 1.087 1 0.045 -0.003 2.587 2.628 2 0.019 -0.001 1.069 1.087 2 0.045 -0.003 2.588 2.629 ---------------------------------------- ---------------------------------------- tot 0.037 -0.003 2.140 2.174 tot 0.089 -0.007 5.175 5.257
- A penalty functional is added to the system, driving the integrated local moments into the desired directions, when the following steps are modified in the input (beware the penalty functional contributes to the total energy):
- Switching on constraints on magnetic moments (I_CONSTRAINED_M=1).
- Setting integration radius to determine local moments (RWIGS=1.0).
- Weight in penalty functional (LAMBDA=10).
- Target directions for constraints on magnetic moments (M_CONSTR= 0 0 1 0 1 1).
Download
To the list of examples or to the main page