Spin spirals: Difference between revisions
Vaspmaster (talk | contribs) |
Vaspmaster (talk | contribs) |
||
Line 99: | Line 99: | ||
</math> | </math> | ||
In most cases it is more than sufficient to set {{TAG|ENMAX}}={{TAG|ENINI}}<tt>+100</tt> | In most cases it is more than sufficient to set {{TAG|ENMAX}}={{TAG|ENINI}}<tt>+100</tt>, | ||
but in order to be able to judge whether {{TAG|ENMAX}} was chosen large enough one will always get a warning at runtime, ''e.g.'' | |||
----------------------------------------------------------------------------- | ----------------------------------------------------------------------------- |
Revision as of 19:46, 6 July 2018
Generalized Bloch condition
Spin spirals may be conveniently modeled using a generalization of the Bloch condition (set LNONCOLLINEAR=.TRUE. and LSPIRAL=.TRUE.):
i.e., from one unit cell to the next the up- and down-spinors pick up an additional phase factor of and , respectively, where R is a lattice vector of the crystalline lattice, and q is the so-called spin-spiral propagation vector.
The spin-spiral propagation vector is commonly chosen to lie within the first Brillouin zone of the reciprocal space lattice, and has to be specified by means of the QSPIRAL-tag.
The generalized Bloch condition above gives rise to the following behavior of the magnetization density:
This is schematically depicted below: the components of the magnization in the xy-plane rotate about the spin-spiral propagation vector q.
N.B.: This does not mean that the magnetisation density may not have contributions along the z-direction.
These, however, will not be affected by the generalized Bloch condition, i.e., will simply show the usual cell periodicity.
If one explicitly wants to keep the magnetisation density from developing components along the z-direction set:
LZEROZ = .TRUE.
This will set at each iteration step of the electronic minimisation.
Basis set considerations
The generalized Bloch condition redefines the Bloch functions as follows:
This changes the Hamiltonian only minimally:
where in and the kinetic energy of a plane wave component changes to:
In the case of spin-spiral calculations the cutoff energy of the basis set of the individual spinor components is specified by means of the ENINI-tag.
Additionally one needs to set ENMAX appropriately: ENMAX needs to be chosen larger than ENINI, and large enough so that the plane wave components of both the up-spinors as well as the components of the down-spinor all have a kinetic energy smaller than ENMAX. This is the case when:
where
In most cases it is more than sufficient to set ENMAX=ENINI+100, but in order to be able to judge whether ENMAX was chosen large enough one will always get a warning at runtime, e.g.
----------------------------------------------------------------------------- | | | W W AA RRRRR N N II N N GGGG !!! | | W W A A R R NN N II NN N G G !!! | | W W A A R R N N N II N N N G !!! | | W WW W AAAAAA RRRRR N N N II N N N G GGG ! | | WW WW A A R R N NN II N NN G G | | W W A A R R N N II N N GGGG !!! | | | | To represent the spin spiral you requested, with a kinetic | | energy cutoff of ENINI= 300.00 eV, choose ENMAX > 331.21 eV | | Currently ENMAX= 400.00 eV | | | -----------------------------------------------------------------------------
Symmetry
Generally the introduction of a spin-spiral will lower the symmetry of the system. At present VASP can not correctly account for the presence of a spin-spiral in its symmetry analysis.
Therefore the use of symmetry has to be switched of completely:
ISYM = -1
Initialization of the magnetic subsystem
Related Tags and Sections
LSPIRAL, QSPIRAL, LZEROZ, LNONCOLLINEAR, MAGMOM, ENINI, ENMAX, ISYM, I_CONSTRAINED_M, LAMBDA, M_CONSTR, RWIGS