|
|
Line 71: |
Line 71: |
| H^{\downarrow\downarrow}:\qquad |{\bf k} + {\bf G}|^2 \rightarrow |{\bf k} + {\bf G} + {\bf q} /2|^2 | | H^{\downarrow\downarrow}:\qquad |{\bf k} + {\bf G}|^2 \rightarrow |{\bf k} + {\bf G} + {\bf q} /2|^2 |
| </math> | | </math> |
| | |
| | In the case of spin-spiral calculations the cutoff energy of the basis set is specfied by means of the {{TAG|ENINI}}-tag. |
Revision as of 13:21, 6 July 2018
Generalized Bloch condition
Spin spirals may be conveniently modeled using a generalization of the Bloch condition (set LNONCOLLINEAR=.TRUE. and LSPIRAL=.TRUE.):
i.e., from one unit cell to the next the up- and down-spinors pick up an additional phase factor of and , respectively,
where R is a lattice vector of the crystalline lattice, and q is the so-called spin-spiral propagation vector.
The spin-spiral propagation vector is commonly chosen to lie within the first Brillouin zone of the reciprocal space lattice, and has to be specified by means of the QSPIRAL-tag.
The generalized Bloch condition above gives rise to the following behavior of the magnetization density:
This is schematically depicted in the figure at the top of this page:
the components of the magnization in the xy-plane rotate about the spin-spiral propagation vector q.
Basis set considerations
The generalized Bloch condition redefines the Bloch functions as follows:
This changes the Hamiltonian only minimally:
where in and the kinetic energy of a plane wave component changes to:
In the case of spin-spiral calculations the cutoff energy of the basis set is specfied by means of the ENINI-tag.