|
|
Line 15: |
Line 15: |
| </math> | | </math> |
| </span> | | </span> |
| | |
| | |
| | The above definition gives rise to the following magnetization density: |
| | |
| | :<math> |
| | {\bf m} ({\bf r} + {\bf R})= \left( |
| | \begin{array}{c} |
| | m_x({\bf r}) \cos({\bf q} \cdot {\bf R}) - m_y({\bf r}) \sin({\bf q} \cdot {\bf R}) \\ |
| | m_x({\bf r}) \sin({\bf q} \cdot {\bf R}) + m_y({\bf r}) \cos({\bf q} \cdot {\bf R}) \\ |
| | m_z({\bf r}) |
| | \end{array} |
| | \right) |
| | </math> |
Revision as of 12:21, 6 July 2018
Generalized Bloch condition
Spin spirals may be conveniently modeled using a generalisation of the Bloch condition:
The above definition gives rise to the following magnetization density: