|
|
Line 4: |
Line 4: |
| # static electric field <math display="inline">\mathcal{E}_\alpha</math> with <math display="inline">\alpha=\{1..3\}</math> | | # static electric field <math display="inline">\mathcal{E}_\alpha</math> with <math display="inline">\alpha=\{1..3\}</math> |
|
| |
|
| By performing a Taylor expansion of the total energy in terms of these perturbations we obtain{{cite|wu:prb:2005}} | | By performing a Taylor expansion of the total energy $E$ in terms of these perturbations we obtain{{cite|wu:prb:2005}} |
| :<math> | | :<math> |
| \begin{aligned} | | \begin{aligned} |
Line 75: |
Line 75: |
|
| |
|
| <math display="block"> | | <math display="block"> |
| Z_{m\alpha}=-\Omega_0 \frac{\partial^2 E}{\partial u_m \partial \mathcal{E}_\alpha} |_{\eta}
| | Z^*_{m\alpha}=-\Omega_0 \frac{\partial^2 E}{\partial u_m \partial \mathcal{E}_\alpha} |_{\eta} |
| \qquad \text{Born effective charges} | | \qquad \text{Born effective charges} |
| </math> | | </math> |
Line 96: |
Line 96: |
| \begin{aligned} | | \begin{aligned} |
| \chi_{\alpha\beta} &= \overline{\chi}_{\alpha\beta} + | | \chi_{\alpha\beta} &= \overline{\chi}_{\alpha\beta} + |
| \Omega_0^{-1} Z_{m\alpha} (\Phi)^{-1}_{mn} Z_{n\beta} | | \Omega_0^{-1} Z^*_{m\alpha} (\Phi)^{-1}_{mn} Z^*_{n\beta} |
| \qquad \text{dielectric susceptibility}\\ | | \qquad \text{dielectric susceptibility}\\ |
| C_{jk} &= \overline{C}_{jk} + | | C_{jk} &= \overline{C}_{jk} + |
Line 102: |
Line 102: |
| \qquad \text{elastic tensor}\\ | | \qquad \text{elastic tensor}\\ |
| e_{\alpha j} &= \overline{e}_{\alpha j} + | | e_{\alpha j} &= \overline{e}_{\alpha j} + |
| \Omega_0^{-1}Z_{m\alpha} (\Phi)^{-1}_{mn} \Xi_{nj} | | \Omega_0^{-1}Z^*_{m\alpha} (\Phi)^{-1}_{mn} \Xi_{nj} |
| \qquad \text{piezoelectric tensor} | | \qquad \text{piezoelectric tensor} |
| \end{aligned} | | \end{aligned} |
Line 110: |
Line 110: |
|
| |
|
| The ionic contributions to the dielectric tensor are: <math display="block"> | | The ionic contributions to the dielectric tensor are: <math display="block"> |
| \epsilon^{\text{ion}}_{ij}=\frac{4\pi e^2}{\Omega} | | \epsilon^{\text{ion}}_{ij}=\frac{4\pi}{\Omega} |
| \sum_{kl} | | \sum_{kl} |
| Z_{ik}
| | Z^*_{ik} |
| \Phi^{-1}_{kl} | | \Phi^{-1}_{kl} |
| Z_{lj}
| | Z^*_{lj} |
| </math> | | </math> |
|
| |
|
| The ionic contributions to the elastic tensor <math display="block"> | | The ionic contributions to the elastic tensor <math display="block"> |
| C^{\text{ion}}_{ik}=e | | C^{\text{ion}}_{ik}= |
| \sum_{kl} | | \sum_{kl} |
| \Xi_{ij} | | \Xi_{ij} |
Line 126: |
Line 126: |
|
| |
|
| The ionic contributions to the piezoelectric tensor <math display="block"> | | The ionic contributions to the piezoelectric tensor <math display="block"> |
| e^{\text{ion}}_{ij}=e | | e^{\text{ion}}_{ij}= |
| \sum_{kl} | | \sum_{kl} |
| Z_{ij}
| | Z^*_{ij} |
| \Phi^{-1}_{jk} | | \Phi^{-1}_{jk} |
| \Xi_{kl} | | \Xi_{kl} |
Latest revision as of 15:08, 8 February 2024
Let’s consider three types of static perturbations
- atomic displacements with with and
- homogeneous strains with
- static electric field with
By performing a Taylor expansion of the total energy $E$ in terms of these perturbations we obtain[1]
The derivatives of the energy with respect to an electric field are the polarization, with respect to atomic displacements are the forces, with respect to changes in the lattice vectors are the stress tensor.
This leads to the following ‘clamped-ion’ or ‘frozen-ion’ definitions:
To compare with experimental results, however, the static response properties should take into account the ionic relaxation. This follows from the Taylor expansion above by looking at the ionic positions where the energy is minimal:
The physical ‘relaxed-ion’ tensors are
The second term on the right-hand side of each of these equations is called the ionic contributions to the dielectric susceptibility, elastic tensor, and piezoelectric tensor.
The ionic contributions to the dielectric tensor are:
The ionic contributions to the elastic tensor
The ionic contributions to the piezoelectric tensor
References