Determining the Magnetic Anisotropy: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 8: Line 8:


Electronic minimization
Electronic minimization
   ENCUT        = 300
   ENCUT        = 450
   EDIFF        = 1E-7
   EDIFF        = 1E-7
   LORBIT        = 11
   LORBIT        = 11

Revision as of 08:38, 25 August 2016

Description: Magnetocrystalline Anisotropy Energy


  • INCAR
NiO GGA+U MAE
  SYSTEM    = "NiO"

Electronic minimization
  ENCUT         = 450
  EDIFF         = 1E-7
  LORBIT        = 11
  LREAL         = .False.
  ISTART        = 0
  ISYM          = -1
  NELMIN        = 6
  #  ICHARG = 11
  #  LCHARG = .FALSE.
  #  LWAVE = .FALSE.
  #  NBANDS = 328
  #  GGA_COMPAT = .FALSE.

DOS
  ISMEAR    = -5

Magnetism
  ISPIN     = 2
  MAGMOM    = 0 0 2 0 0 -2 6*0 # Ground state
  # LSORBIT       = .True.
  # LNONCOLLINEAR = .True.
  # SAXIS = 1 0 0 # Quantization axis used to rotate all spins in a direction defined in the (O,x,y,z) Cartesian frame

Mixer
  AMIX      = 0.2
  BMIX      = 0.00001
  AMIX_MAG  = 0.8
  BMIX_MAG  = 0.00001

GGA+U
  LDAU      = .TRUE.
  LDAUTYPE  = 2
  LDAUL     = 2 -1
  LDAUU     = 5.00 0.00
  LDAUJ     = 0.00 0.00
  LDAUPRINT = 2
  LMAXMIX   = 4 
  • KPOINTS
k-points
 0
gamma
 4  4  4 
 0  0  0
  • POSCAR
NiO
 4.17
 1.0 0.5 0.5
 0.5 1.0 0.5
 0.5 0.5 1.0
 2 2
Cartesian
 0.0 0.0 0.0
 1.0 1.0 1.0
 0.5 0.5 0.5
 1.5 1.5 1.5

Firstly, a collinear calculation has to be done. The magnetic anisotropy is determined non-self-consistently by rotating all spins according to a defined direction (uvw). The Magnetocrystalline Anisotropy Energy is calculated by orientating the spins in different directions and the following equation : EMAE = E(uvw) - Emin, with Emin the energy of the most stable spin orientation.

Download

4_3_NiO_LSDA+U.tgz


To the list of examples or to the main page