ML SIGW0: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 3: Line 3:
{{DEF|ML_SIGW0|1E-7|for {{TAG|ML_MODE}} {{=}} REFIT|1.0|else}}
{{DEF|ML_SIGW0|1E-7|for {{TAG|ML_MODE}} {{=}} REFIT|1.0|else}}


Description: This flag sets the initial reversed and squared precision parameter <math>\frac{1}{\sigma_{\mathrm{w}}^{2}}</math> in the machine learning force field method.  
Description: This flag sets the precision parameter <math>s_{\mathrm{w}}</math> for the fitting in the machine learning force field method.  
----
----


For details about the optimization of this regularization parameter see [[Machine learning force field: Theory#Bayesian error estimation|this section]].
If the regularization needs to be controlled manually, like e.g. in the fitting via singular value decomposition ({{TAG|ML_IALGO_LINREG}}=4), the best is to control the regularization via this parameter and keep the noise paramter <math>s_{\mathrm{v}}</math> (see {{TAG|ML_SIGV0}}) constant at 1.


For the theory of this regularization parameter see [[Machine learning force field: Theory#Regression|this section]].
== Related tags and articles ==
== Related tags and articles ==
{{TAG|ML_LMLFF}}, {{TAG|ML_MODE}}, {{TAG|ML_IREG}}, {{TAG|ML_SIGV0}}
{{TAG|ML_LMLFF}}, {{TAG|ML_MODE}}, {{TAG|ML_IREG}}, {{TAG|ML_SIGV0}}, {{TAG|ML_IALGO_LINREG}}


{{sc|ML_SIGW0|Examples|Examples that use this tag}}
{{sc|ML_SIGW0|Examples|Examples that use this tag}}

Revision as of 15:46, 3 July 2023

ML_SIGW0 = [real]
Default: none 

Default: ML_SIGW0 = 1E-7 for ML_MODE = REFIT
= 1.0 else

Description: This flag sets the precision parameter for the fitting in the machine learning force field method.


If the regularization needs to be controlled manually, like e.g. in the fitting via singular value decomposition (ML_IALGO_LINREG=4), the best is to control the regularization via this parameter and keep the noise paramter (see ML_SIGV0) constant at 1.

For the theory of this regularization parameter see this section.

Related tags and articles

ML_LMLFF, ML_MODE, ML_IREG, ML_SIGV0, ML_IALGO_LINREG

Examples that use this tag