AGGAC: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{DEF|AGGAC|1.0 | if {{TAG|LHFCALC}}<math>=</math>.FALSE. or {{TAG|AEXX}}<math>\neq</math>1.0 | 0.0 | if {{TAG|LHFCALC}}<math>=</math>.TRUE. and {{TAG|AEXX}}<math>=</math>1.0}} | {{DEF|AGGAC|1.0 | if {{TAG|LHFCALC}}<math>=</math>.FALSE. or {{TAG|AEXX}}<math>\neq</math>1.0 | 0.0 | if {{TAG|LHFCALC}}<math>=</math>.TRUE. and {{TAG|AEXX}}<math>=</math>1.0}} | ||
Description: {{TAG|AGGAC}} is a parameter that multiplies the gradient correction in the GGA correlation. | Description: {{TAG|AGGAC}} is a parameter that multiplies the gradient correction in the GGA correlation functional. | ||
---- | ---- | ||
{{TAG|AGGAC}} can be used as the fraction of gradient correction in the GGA correlation in a Hartree-Fock/GGA hybrid functional. | {{TAG|AGGAC}} can be used as the fraction of gradient correction in the GGA correlation in a Hartree-Fock/GGA hybrid functional. |
Revision as of 21:28, 15 February 2023
AGGAC = [real]
Default: AGGAC | = 1.0 | if LHFCALC.FALSE. or AEXX1.0 |
= 0.0 | if LHFCALC.TRUE. and AEXX1.0 |
Description: AGGAC is a parameter that multiplies the gradient correction in the GGA correlation functional.
AGGAC can be used as the fraction of gradient correction in the GGA correlation in a Hartree-Fock/GGA hybrid functional.
Related tags and articles
AEXX, ALDAX, ALDAC, AGGAX, AMGGAX, AMGGAC, LHFCALC, List of hybrid functionals