ODDONLYGW: Difference between revisions

From VASP Wiki
No edit summary
Line 20: Line 20:
  <math> \vec{k} = \vec{b}_{1} \frac{n_{1}}{N_{1}} + \vec{b}_{2} \frac{n_{2}}{N_{2}}  + \vec{b}_{3} \frac{n_{3}}{N_{3}} ,\qquad  n_1=0...,N_1-1 \quad  n_2=0...,N_2-1 \quad  n_3=0...,N_3-1. </math>
  <math> \vec{k} = \vec{b}_{1} \frac{n_{1}}{N_{1}} + \vec{b}_{2} \frac{n_{2}}{N_{2}}  + \vec{b}_{3} \frac{n_{3}}{N_{3}} ,\qquad  n_1=0...,N_1-1 \quad  n_2=0...,N_2-1 \quad  n_3=0...,N_3-1. </math>


== Related Tags and Sections ==
== Related tags and articles ==
{{TAG|EVENONLYGW}},
{{TAG|EVENONLYGW}},
{{TAG|GW calculations}}
{{TAG|GW calculations}}
Line 27: Line 27:
----
----


[[Category:INCAR]][[Category:Many-Body Perturbation Theory]][[Category:GW]]
[[Category:INCAR tag]][[Category:Many-Body Perturbation Theory]][[Category:GW]]

Revision as of 14:52, 8 April 2022

ODDONLYGW = [logical]
Default: ODDONLYGW = .FALSE. 

Description: ODDONLYGW allows to avoid the inclusion of the point in the evaluation of response functions (in GW calculations).


The independent particle polarizability is given by:

If the point is included in the summation over , convergence is very slow for some materials (e.g. GaAs).

To deal with this problem the flag ODDONLYGW has been included. In the automatic mode, the -grid is given by (see Sec. \ref{sec:autok}):


Related tags and articles

EVENONLYGW, GW calculations

Examples that use this tag