Category:Exchange-correlation functionals: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 4: Line 4:
E_{\rm tot}^{\rm KS} = -\frac{1}{2}\sum_{i}\int\psi_{i}^{*}({\bf r})\nabla^{2}\psi_{i}({\bf r})d^{3}r - \sum_{A}\int\frac{Z_{A}}{\left\vert{\bf r}-{\bf R}_{A}\right\vert}\rho({\bf r})d^{3}r + \frac{1}{2}\int\int\frac{\rho({\bf r})\rho({\bf r'})}{\left\vert{\bf r}-{\bf r'}\right\vert}d^{3}rd^{3}r' + E_{\rm xc} + \frac{1}{2}\sum_{A\ne B}\frac{Z_{A}Z_{B}}{\left\vert{\bf R}_{A}-{\bf R}_{B}\right\vert}
E_{\rm tot}^{\rm KS} = -\frac{1}{2}\sum_{i}\int\psi_{i}^{*}({\bf r})\nabla^{2}\psi_{i}({\bf r})d^{3}r - \sum_{A}\int\frac{Z_{A}}{\left\vert{\bf r}-{\bf R}_{A}\right\vert}\rho({\bf r})d^{3}r + \frac{1}{2}\int\int\frac{\rho({\bf r})\rho({\bf r'})}{\left\vert{\bf r}-{\bf r'}\right\vert}d^{3}rd^{3}r' + E_{\rm xc} + \frac{1}{2}\sum_{A\ne B}\frac{Z_{A}Z_{B}}{\left\vert{\bf R}_{A}-{\bf R}_{B}\right\vert}
</math>
</math>
where the terms on the left-hand side represent the non-interacting kinetic energy of the electrons, the Classical Coulomb Hartree term, the exchange-correlation energy, the electrons-nuclei attraction energy and the nuclei-nuclei repulsion energy. The orbitals <math>\psi_{i}</math> and the electron density <math>\rho=\sum_{i}\left\vert\psi_{i}\right\vert^{2}</math> are calculated by solving the KS equations
where the terms on the right-hand side represent the non-interacting kinetic energy of the electrons, the Classical Coulomb Hartree term, the exchange-correlation energy, the electrons-nuclei attraction energy and the nuclei-nuclei repulsion energy. The orbitals <math>\psi_{i}</math> and the electron density <math>\rho=\sum_{i}\left\vert\psi_{i}\right\vert^{2}</math> are calculated by solving the KS equations
:<math>
:<math>
\left(-\frac{1}{2}\nabla^{2} -\sum_{A}\frac{Z_{A}}{\left\vert{\bf r}-{\bf R}_{A}\right\vert} + v_{\rm H}({\bf r}) + v_{\rm xc}({\bf r})\right)\psi_{i}({\bf r}) = \epsilon_{i}\psi_{i}({\bf r})
\left(-\frac{1}{2}\nabla^{2} -\sum_{A}\frac{Z_{A}}{\left\vert{\bf r}-{\bf R}_{A}\right\vert} - \int\frac{\left\vert\psi_{i}({\bf r'})\right\vert^{2}}{\left\vert{\bf r}-{\bf r'}\right\vert}d^{3}r' + v_{\rm xc}({\bf r})\right)\psi_{i}({\bf r}) = \epsilon_{i}\psi_{i}({\bf r})
</math>
</math>



Revision as of 13:00, 18 January 2022

In the Kohn-Sham (KS) formulation of density functional theory (DFT)[1][2], the total energy is given by

where the terms on the right-hand side represent the non-interacting kinetic energy of the electrons, the Classical Coulomb Hartree term, the exchange-correlation energy, the electrons-nuclei attraction energy and the nuclei-nuclei repulsion energy. The orbitals and the electron density are calculated by solving the KS equations

Theoretical Background

How to


Subcategories

This category has the following 5 subcategories, out of 5 total.

Pages in category "Exchange-correlation functionals"

The following 120 pages are in this category, out of 120 total.