Available PAW potentials: Difference between revisions

From VASP Wiki
No edit summary
Line 435: Line 435:


'''Important Note''': If dimers with short bonds are present in the compound (O<sub>2</sub>, CO, N<sub>2</sub>, F<sub>2</sub>, P<sub>2</sub>, S<sub>2</sub>, Cl<sub>2</sub>), we recommend to use the _h potentials. Specifically, C_GW_h, O_GW_h, N_GW_h, F_GW_h.
'''Important Note''': If dimers with short bonds are present in the compound (O<sub>2</sub>, CO, N<sub>2</sub>, F<sub>2</sub>, P<sub>2</sub>, S<sub>2</sub>, Cl<sub>2</sub>), we recommend to use the _h potentials. Specifically, C_GW_h, O_GW_h, N_GW_h, F_GW_h.
{| class="wikitable"
|-
|Element (and appendix) ||default cutoff ENMAX (eV) ||valency
|-
|H GW ||300 ||1
|-
|H h GW ||700 ||1
|-
|He GW ||405 ||2
|-
|Li sv GW ||434 ||3
|-
|Li GW ||112 ||1
|-
|Li AE GW ||434 ||3
|-
|Be sv GW ||537 ||4
|-
|Be GW ||248 ||2
|-
|B GW ||319 ||3
|-
|C GW ||414 ||4
|-
|C GW new ||414 ||4
|-
|C h GW ||741 ||4
|-
|N GW ||421 ||5
|-
|N GW new ||421 ||5
|-
|N h GW ||755 ||5
|-
|N s GW ||296 ||5
|-
|O GW ||415 ||6
|-
|O GW new ||434 ||6
|-
|O h GW ||765 ||6
|-
|O s GW ||335 ||6
|-
|F GW ||488 ||7
|-
|F GW new ||488 ||7
|-
|F h GW ||848 ||7
|-
|Ne GW ||432 ||8
|-
|Ne s GW ||318 ||8
|-
|Na sv GW ||372 ||9
|-
|Mg sv GW ||430 ||10
|-
|Mg GW ||126 ||2
|-
|Mg pv GW ||404 ||8
|-
|Al GW ||240 ||3
|-
|Al sv GW ||411 ||11
|-
|Si GW ||245 ||4
|-
|Si GW new ||245 ||4
|-
|Si sv GW ||548 ||12
|-
|P GW ||255 ||5
|-
|S GW ||259 ||6
|-
|Cl GW ||262 ||7
|-
|Ar GW ||290 ||8
|-
|K sv GW ||249 ||9
|-
|Ca sv GW ||281 ||10
|-
|Sc sv GW ||378 ||11
|-
|Ti sv GW ||383 ||12
|-
|V sv GW ||382 ||13
|-
|Cr sv GW ||384 ||14
|-
|Mn sv GW ||384 ||15
|-
|Mn GW ||278 ||7
|-
|Fe sv GW ||387 ||16
|-
|Fe GW ||321 ||8
|-
|Co sv GW ||387 ||17
|-
|Co GW ||323 ||9
|-
|Ni sv GW ||389 ||18
|-
|Ni GW ||357 ||10
|-
|Cu sv GW ||467 ||19
|-
|Cu GW ||417 ||11
|-
|Zn sv GW ||401 ||20
|-
|Zn GW ||328 ||12
|-
|Ga d GW ||404 ||13
|-
|Ga GW ||135 ||3
|-
|Ga sv GW ||404 ||21
|-
|Ge d GW ||375 ||14
|-
|Ge sv GW ||410 ||22
|-
|Ge GW ||174 ||4
|-
|As GW ||209 ||5
|-
|As sv GW ||415 ||23
|-
|Se GW ||212 ||6
|-
|Se sv GW ||469 ||24
|-
|Br GW ||216 ||7
|-
|Br sv GW ||475 ||25
|-
|Kr GW ||252 ||8
|-
|Rb sv GW ||221 ||9
|-
|Sr sv GW ||225 ||10
|-
|Y sv GW ||339 ||11
|-
|Zr sv GW ||346 ||12
|-
|Nb sv GW ||353 ||13
|-
|Mo sv GW ||344 ||14
|-
|Tc sv GW ||351 ||15
|-
|Ru sv GW ||348 ||16
|-
|Rh sv GW ||351 ||17
|-
|Rh GW ||247 ||9
|-
|Pd sv GW ||356 ||18
|-
|Pd GW ||251 ||10
|-
|Ag sv GW ||354 ||19
|-
|Ag GW ||250 ||11
|-
|Cd sv GW ||361 ||20
|-
|Cd GW ||254 ||12
|-
|In d GW ||279 ||13
|-
|In sv GW ||366 ||21
|-
|Sn d GW ||260 ||14
|-
|Sn sv GW ||368 ||22
|-
|Sb d GW ||263 ||15
|-
|Sb sv GW ||372 ||23
|-
|Sb GW ||172 ||5
|-
|Te GW ||175 ||6
|-
|Te sv GW ||376 ||24
|-
|I GW ||176 ||7
|-
|I sv GW ||381 ||25
|-
|Xe GW ||180 ||8
|-
|Xe sv GW ||400 ||26
|-
|Cs sv GW ||198 ||9
|-
|Ba sv GW ||238 ||10
|-
|La GW ||313 ||11
|-
|Ce GW ||305 ||12
|-
|Hf sv GW ||283 ||12
|-
|Ta sv GW ||286 ||13
|-
|W sv GW ||317 ||14
|-
|Re sv GW ||317 ||15
|-
|Os sv GW ||320 ||16
|-
|Ir sv GW ||320 ||17
|-
|Pt sv GW ||324 ||18
|-
|Pt GW ||249 ||10
|-
|Au sv GW ||306 ||19
|-
|Au GW ||248 ||11
|-
|Hg sv GW ||312 ||20
|-
|Tl d GW ||237 ||15
|-
|Tl sv GW ||316 ||21
|-
|Pb d GW ||238 ||16
|-
|Pb sv GW ||317 ||22
|-
|Bi d GW ||261 ||17
|-
|Bi GW ||147 ||5
|-
|Bi sv GW ||323 ||23
|-
|Po d GW ||267 ||18
|-
|Po sv GW ||326 ||24
|-
|At d GW ||266 ||17
|-
|At sv GW ||328 ||25
|-
|Rn d GW ||268 ||18
|-
|Rn sv GW ||331 ||26
|-
|}


== References ==
== References ==

Revision as of 07:20, 10 February 2021

PAW potentials for all elements in the periodic table are available. With the exception of the 1st row elements, all PAW potentials were generated to work reliably and accurately at an energy cutoff of roughly 250 eV (the default energy cutoff is read as ENMAX in the POTCAR file). The distributed PAW potentials have been generated by G. Kresse following the recipes discussed in [1], whereas the PAW method has been first suggested and used by Peter Blöchl [2]. If you use any of the supplied PAW potentials you should include these two references.

Generally the PAW potentials are more accurate than ultra-soft pseudopotentials (US-PP). There are two reasons for this: first, the radial cutoffs (core radii) are smaller than the radii used for US pseudopotentials, and second the PAW potentials reconstruct the exact valence wavefunction with all nodes in the core region. Since the core radii of the PAW potentials are smaller, the required energy cutoffs and basis sets are also somewhat larger. If such a high precision is not required, the older US-PP can be used. In practice, however, the increase in the basis set size will be usually small, since the energy cutoffs have not changed appreciably for C, N and O, so that calculations for model structures that include any of these elements are not more expensive with PAW than with US-PP.

For some elements several PAW versions exist. The standard version has generally no extension. An extension _h implies that the potential is harder than the standard potential and hence requires a greater energy cutoff. The extension _s means that the potential is softer than the standard version. The extensions _pv and _sv imply that the and semi-core states are treated as valence states (i.e. for V_pv the states are treated as valence states, and for V_sv the and states are treated as valence states). PAW files with an extension _d, treat the semi core states as valence states (for Ga_d the states are treated as valence states).

Recommended potentials for DFT calculations

The following table lists the available (PBE) PAW potentials for VASP. The recommended potentials are reported in bold face. The corresponding distribution directory of the potential is created by adding underscores between the elemental name and the extensions ``_, e.g Li sv becomes Li_sv. The reported cutoffs might differ slightly for LDA potentials. All distributed potentials have been tested using standard DFT-"benchmark" runs (see the data_base file in the released tar files). We strongly recommend to use the potentials only in VASP.5.4 or higher.

Important Note: If dimers with short bonds are present in the compound (O2, CO, N2, F2, P2, S2, Cl2), we recommend to use the _h potentials. Specifically, C_h, O_h, N_h, F_h, P_h, S_h, Cl_h.

Element (and appendix) default cutoff ENMAX (eV) valency
H 250 1
H AE 1000 1
H h 700 1
H s 200 1
He 479 2
Li 140 1
Li sv 499 3
Be 248 2
Be sv 309 4
B 319 3
B h 700 3
B s 269 3
C 400 4
C h 700 4
C s 274 4
N 400 5
N h 700 5
N s 280 5
O 400 6
O h 700 6
O s 283 6
F 400 7
F h 700 7
F s 290 7
Ne 344 8
Na 102 1
Na pv 260 7
Na sv 646 9
Mg 200 2
Mg pv 404 8
Mg sv 495 10
Al 240 3
Si 245 4
P 255 5
P h 390 5
S 259 6
S h 402 6
Cl 262 7
Cl h 409 7
Ar 266 8
K pv 117 7
K sv 259 9
Ca pv 120 8
Ca sv 267 10
Sc 155 3
Sc sv 223 11
Ti 178 4
Ti pv 222 10
Ti sv 275 12
V 193 5
V pv 264 11
V sv 264 13
Cr 227 6
Cr pv 266 12
Cr sv 395 14
Mn 270 7
Mn pv 270 13
Mn sv 387 15
Fe 268 8
Fe pv 293 14
Fe sv 391 16
Co 268 9
Co pv 271 15
Co sv 390 17
Ni 270 10
Ni pv 368 16
Cu 295 11
Cu pv 369 17
Zn 277 12
Ga 135 3
Ga d 283 13
Ga h 405 13
Ge 174 4
Ge d 310 14
Ge h 410 14
As 209 5
As d 289 15
Se 212 6
Br 216 7
Kr 185 8
Rb pv 122 7
Rb sv 220 9
Sr sv 229 10
Y sv 203 11
Zr sv 230 12
Nb pv 209 11
Nb sv 293 13
Mo 225 6
Mo pv 225 12
Mo sv 243 14
Tc 229 7
Tc pv 264 13
Tc sv 319 15
Ru 213 8
Ru pv 240 14
Ru sv 319 16
Rh 229 9
Rh pv 247 15
Pd 251 10
Pd pv 251 16
Ag 250 11
Ag pv 298 17
Cd 274 12
In 96 3
In d 239 13
Sn 103 4
Sn d 241 14
Sb 172 5
Te 175 6
I 176 7
Xe 153 8
Cs sv 220 9
Ba sv 187 10
La 219 11
La s 137 9
Ce 273 12
Ce h 300 12
Ce 3 177 11
Pr 273 13
Pr 3 182 11
Nd 253 14
Nd 3 183 11
Pm 259 15
Pm 3 177 11
Sm 258 16
Sm 3 177 11
Eu 250 17
Eu 2 99 8
Eu 3 129 9
Gd 256 18
Gd 3 154 9
Tb 265 19
Tb 3 156 9
Dy 255 20
Dy 3 156 9
Ho 257 21
Ho 3 154 9
Er 2 120 8
Er 3 155 9
Er 298 22
Tm 257 23
Tm 3 149 9
Yb 253 24
Yb 2 113 8
Lu 256 25
Lu 3 155 9
Hf 220 4
Hf pv 220 10
Hf sv 237 12
Ta 224 5
Ta pv 224 11
W 223 6
W pv 223 12
Re 226 7
Re pv 226 13
Os 228 8
Os pv 228 14
Ir 211 9
Pt 230 10
Pt pv 295 16
Au 230 11
Hg 233 12
Tl 90 3
Tl d 237 13
Pb 98 4
Pb d 238 14
Bi 105 5
Bi d 243 15
Po 160 6
Po d 265 16
At 161 7
At d 266 17
Rn 152 8
Fr sv 215 9
Ra sv 237 10
Ac 172 11
Th 247 12
Th s 169 10
Pa 252 13
Pa s 193 11
U 253 14
U s 209 14
Np 254 15
Np s 208 15
Pu 254 16
Pu s 208 16
Am 256 17
Cm 258 18

Hydrogen like potentials are supplied for a valency between 0.25 and 1.75 as listed in the table below:

Element (and appendix) default cutoff ENMAX (eV) valency
H .25 250 0.2500
H .33 250 0.3300
H .42 250 0.4200
H .5 250 0.5000
H .58 250 0.5800
H .66 250 0.6600
H .75 250 0.7500
H 1.25 250 1.2500
H 1.33 250 1.3300
H 1.5 250 1.5000
H 1.66 250 1.6600
H 1.75 250 1.7500

Recommended potentials for GW/RPA calculations

The recommended GW potentials are listed in the Table below. As documented in the data_base file released with the PAW potentials, for density functional calculations, the GW potentials yield virtually identical results as the standard potentials, and it is safe to assume that one can use the GW potentials instead of standard LDA/GGA potentials for groundstate calculations without deteriorating the results. In fact, we believe the GW potentials are generally at least as good as the DFT standard potentials, but might be much better for excited state properties.

In general, the GW potentials yield much better scattering properties at high energies well above the Fermi-level (typically up to 10-20 Ry above the vacuum level). This is believed to be important for GW and RPA calculations.

Important Note: If dimers with short bonds are present in the compound (O2, CO, N2, F2, P2, S2, Cl2), we recommend to use the _h potentials. Specifically, C_GW_h, O_GW_h, N_GW_h, F_GW_h.

Element (and appendix) default cutoff ENMAX (eV) valency
H GW 300 1
H h GW 700 1
He GW 405 2
Li sv GW 434 3
Li GW 112 1
Li AE GW 434 3
Be sv GW 537 4
Be GW 248 2
B GW 319 3
C GW 414 4
C GW new 414 4
C h GW 741 4
N GW 421 5
N GW new 421 5
N h GW 755 5
N s GW 296 5
O GW 415 6
O GW new 434 6
O h GW 765 6
O s GW 335 6
F GW 488 7
F GW new 488 7
F h GW 848 7
Ne GW 432 8
Ne s GW 318 8
Na sv GW 372 9
Mg sv GW 430 10
Mg GW 126 2
Mg pv GW 404 8
Al GW 240 3
Al sv GW 411 11
Si GW 245 4
Si GW new 245 4
Si sv GW 548 12
P GW 255 5
S GW 259 6
Cl GW 262 7
Ar GW 290 8
K sv GW 249 9
Ca sv GW 281 10
Sc sv GW 378 11
Ti sv GW 383 12
V sv GW 382 13
Cr sv GW 384 14
Mn sv GW 384 15
Mn GW 278 7
Fe sv GW 387 16
Fe GW 321 8
Co sv GW 387 17
Co GW 323 9
Ni sv GW 389 18
Ni GW 357 10
Cu sv GW 467 19
Cu GW 417 11
Zn sv GW 401 20
Zn GW 328 12
Ga d GW 404 13
Ga GW 135 3
Ga sv GW 404 21
Ge d GW 375 14
Ge sv GW 410 22
Ge GW 174 4
As GW 209 5
As sv GW 415 23
Se GW 212 6
Se sv GW 469 24
Br GW 216 7
Br sv GW 475 25
Kr GW 252 8
Rb sv GW 221 9
Sr sv GW 225 10
Y sv GW 339 11
Zr sv GW 346 12
Nb sv GW 353 13
Mo sv GW 344 14
Tc sv GW 351 15
Ru sv GW 348 16
Rh sv GW 351 17
Rh GW 247 9
Pd sv GW 356 18
Pd GW 251 10
Ag sv GW 354 19
Ag GW 250 11
Cd sv GW 361 20
Cd GW 254 12
In d GW 279 13
In sv GW 366 21
Sn d GW 260 14
Sn sv GW 368 22
Sb d GW 263 15
Sb sv GW 372 23
Sb GW 172 5
Te GW 175 6
Te sv GW 376 24
I GW 176 7
I sv GW 381 25
Xe GW 180 8
Xe sv GW 400 26
Cs sv GW 198 9
Ba sv GW 238 10
La GW 313 11
Ce GW 305 12
Hf sv GW 283 12
Ta sv GW 286 13
W sv GW 317 14
Re sv GW 317 15
Os sv GW 320 16
Ir sv GW 320 17
Pt sv GW 324 18
Pt GW 249 10
Au sv GW 306 19
Au GW 248 11
Hg sv GW 312 20
Tl d GW 237 15
Tl sv GW 316 21
Pb d GW 238 16
Pb sv GW 317 22
Bi d GW 261 17
Bi GW 147 5
Bi sv GW 323 23
Po d GW 267 18
Po sv GW 326 24
At d GW 266 17
At sv GW 328 25
Rn d GW 268 18
Rn sv GW 331 26


References