ML IREG: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
---- | ---- | ||
The following cases are possible for this tag: | The following cases are possible for this tag: | ||
*{{TAG|ML_FF_IREG_MB}}=1: The precision ({{TAG|ML_FF_SIGV0_MB}}) and noise ({{TAG|ML_FF_SIGW0_MB}}) parameters are kept constant. | *{{TAG|ML_FF_IREG_MB}}=1: The (initial) precision ({{TAG|ML_FF_SIGV0_MB}}) and noise ({{TAG|ML_FF_SIGW0_MB}}) parameters are kept constant. | ||
*{{TAG|ML_FF_IREG_MB}}=2: The parameters are optimized (default). | *{{TAG|ML_FF_IREG_MB}}=2: The parameters are optimized (default). | ||
For the optimization of the noise parameter <math>\sigma_{\mathrm{v}}^{2}</math> see following section: | |||
{{TAG|On-the-fly machine learning force field generation using Bayesian linear regression}}. | |||
== Related Tags and Sections == | == Related Tags and Sections == |
Revision as of 18:11, 19 May 2019
ML_FF_IREG_MB = [integer]
Default: ML_FF_IREG_MB = 2
Description: This tag specifies whether the noise parameters are kept constant or not in the machine learning force field method.
The following cases are possible for this tag:
- ML_FF_IREG_MB=1: The (initial) precision (ML_FF_SIGV0_MB) and noise (ML_FF_SIGW0_MB) parameters are kept constant.
- ML_FF_IREG_MB=2: The parameters are optimized (default).
For the optimization of the noise parameter see following section: On-the-fly machine learning force field generation using Bayesian linear regression.
Related Tags and Sections
ML_FF_LMLFF, ML_FF_SIGV0_MB, ML_FF_SIGW0_MB