Dielectric properties of Si using BSE: Difference between revisions

From VASP Wiki
No edit summary
Line 43: Line 43:


=== Step 1: DFT groundstate calculation ===  
=== Step 1: DFT groundstate calculation ===  
*We perform standard DFT calculation using the input parameters from above.
*We perform standard DFT calculation using the INCAR.DFT file.


=== Step 2: Obtain DFT "virtual" orbitals (empty states) ===
=== Step 2: Obtain DFT "virtual" orbitals (empty states) ===
*This step uses the following {{TAG|INCAR}} file:
*This step uses the INCAR.DIAG file:
  {{TAGBL|System}}  = Si
  {{TAGBL|System}}  = Si
  {{TAGBL|PREC}} = Normal ; {{TAGBL|ENCUT}} = 250.0
  {{TAGBL|PREC}} = Normal ; {{TAGBL|ENCUT}} = 250.0
Line 59: Line 59:
*It is important that this calculations needs the orbitals ({{TAG|WAVECAR}} file) written in step 1.
*It is important that this calculations needs the orbitals ({{TAG|WAVECAR}} file) written in step 1.


=== Step3 3: RPA quasiparticles with single-shot GW (G0W0) ===
=== Step 3: RPA quasiparticles with single-shot GW (G0W0) ===
*This step uses the following {{TAG|INCAR}} file:
*This step uses the INCAR.GW0 file:
  {{TAGBL|System}}  = Si
  {{TAGBL|System}}  = Si
  {{TAGBL|PREC}} = Normal ; {{TAGBL|ENCUT}} = 250.0
  {{TAGBL|PREC}} = Normal ; {{TAGBL|ENCUT}} = 250.0
Line 86: Line 86:
   band No.  KS-energies  QP-energies  sigma(KS)  V_xc(KS)    V^pw_x(r,r')  Z            occupation  
   band No.  KS-energies  QP-energies  sigma(KS)  V_xc(KS)    V^pw_x(r,r')  Z            occupation  


=== Step 4 (optional): Plot IPA dielectric function using GW0 quasiparticle energies ===
* This step uses the INCAR.NONE file:
{{TAGBL|System}}  = Si
{{TAGBL|PREC}} = Normal ; {{TAGBL|ENCUT}} = 250.0
{{TAGBL|ALGO}} = Nothing ; {{TAGBL|NELM}} = 1
{{TAGBL|ISMEAR}} = 0 ; {{TAGBL|SIGMA}} = 0.01
{{TAGBL|KPAR}} = 2
{{TAGBL|NBANDS}} = 128
{{TAGBL|LWAVE}} = .FALSE.
{{TAGBL|LOPTICS}} = .TRUE. ; {{TAGBL|LPEAD}} = .TRUE.
{{TAGBL|OMEGAMAX}} = 40 
*By specyfing {{TAG|ALGO}}=''Nothing'' we do nothing except reading the {{TAG|WAVECAR}} file.
*Using {{TAG|LOPTICS}}=''.TRUE.'' and {{TAG|LPEAD}}=''.TRUE.'' we compute the dielectric function in the IPA.
----
----



Revision as of 17:11, 10 November 2017

Task

Description: Calculate the dielectric function of Si including excitonic effects by solving the Bethe-Salpeter equation (BSE) on top of GW0.

Input

POSCAR

Si
 5.4300
0.5 0.5 0.0
0.0 0.5 0.5
0.5 0.0 0.5
2
cart
0.00 0.00 0.00 
0.25 0.25 0.25 

INCAR

  • This is the INCAR file for the basic DFT calculation:
System  = Si
PREC = Normal ; ENCUT = 250.0
ISMEAR = 0 ; SIGMA = 0.01
KPAR = 2
EDIFF = 1.E-8

KPOINTS

Automatic
 0
Gamma
 6 6 6 
 0 0 0

Calculation

  • The workflow of GW0+BSE calculations is given in doall.sh and consists of the following consecutive steps:
  1. "Standard" DFT groundstate calculation.
  2. Obtain virtual orbitals: needs WAVECAR file from step 1.
  3. The GW0 calculation: need WAVECAR and WAVEDER from step 2.
  4. Optional step: use LOPTICS=.TRUE. to plot dielectric function in the independent particle approximation (IPA) using GW0 quasiparticle energies instead of DFT energies.
  5. The BSE calculation: needs WAVECAR from step 3 and WAVEDER from step 2.

Step 1: DFT groundstate calculation

  • We perform standard DFT calculation using the INCAR.DFT file.

Step 2: Obtain DFT "virtual" orbitals (empty states)

  • This step uses the INCAR.DIAG file:
System  = Si
PREC = Normal ; ENCUT = 250.0
ALGO = EXACT ; NELM = 1
ISMEAR = 0 ; SIGMA = 0.01
KPAR = 2
NBANDS = 128
LOPTICS = .TRUE. ; LPEAD = .TRUE.
OMEGAMAX = 40
  • We use exact diagonalization for this step (ALGO=EXACT) and keep 128 bands after diagonalization (NBANDS=128).
  • With LPEAD=.TRUE. we use an alternative way of computing the derivates of the orbitals with respect to the Bloch wave vectors.
  • It is important that this calculations needs the orbitals (WAVECAR file) written in step 1.

Step 3: RPA quasiparticles with single-shot GW (G0W0)

  • This step uses the INCAR.GW0 file:
System  = Si
PREC = Normal ; ENCUT = 250.0
ALGO = GW0  
ISMEAR = 0 ; SIGMA = 0.01 
ENCUTGW = 150 ; NELM = 1 ;  NOMEGA =  50 ;  OMEGATL = 280
KPAR = 2
#NBANDSO=4 ; NBANDSV=8 ; LADDER=.TRUE. ; LUSEW=.TRUE.
NBANDS = 128
NBANDSGW = 12
LWAVE = .TRUE.
PRECFOCK = Normal
  • We select the G0W0 method by specifying ALGO=GW0 and {TAG|NELM}}=1.
  • The energy cut off for the response function is select by ENCUTGW.
  • The number of point used in the frequency integration is given by NOMEGA.
  • Use the same number of bands (NBANDS) as in step 2, otherwise the WAVEDER file is not read correctly.
  • The quasiparticle energies are calculated for the first few bands given by NBANDSGW.
  • It is important that this calculation needs the orbitals (WAVECAR file) and the derivatives of the orbitals with respect to the Bloch vectors (WAVEDER file).
  • The quasiparticle energies can be found in the OUTCAR file (saved as OUTCAR.GW0 in this example):
  QP shifts <psi_nk| G(iteration)W_0 |psi_nk>: iteration 1
for sc-GW calculations column KS-energies equals QP-energies in previous step
and V_xc(KS)=  KS-energies - (<T + V_ion + V_H > + <T+V_H+V_ion>^1  + <V_x>^1)
 
k-point   1 :       0.0000    0.0000    0.0000
 band No.  KS-energies  QP-energies   sigma(KS)   V_xc(KS)     V^pw_x(r,r')   Z            occupation 

Step 4 (optional): Plot IPA dielectric function using GW0 quasiparticle energies

  • This step uses the INCAR.NONE file:
System  = Si
PREC = Normal ; ENCUT = 250.0
ALGO = Nothing ; NELM = 1
ISMEAR = 0 ; SIGMA = 0.01
KPAR = 2
NBANDS = 128
LWAVE = .FALSE.
LOPTICS = .TRUE. ; LPEAD = .TRUE.
OMEGAMAX = 40  
  • By specyfing ALGO=Nothing we do nothing except reading the WAVECAR file.
  • Using LOPTICS=.TRUE. and LPEAD=.TRUE. we compute the dielectric function in the IPA.

Used INCAR Tags

ALGO, ANTIRES, EDIFF, ENCUT, ENCUTGW, IALGO, IMIX, ISMEAR, KPAR, LOPTICS, LPEAD, LWAVE, NBANDS, NBANDSGW, NBANDSO, NBANDSV, NELM, NKRED, NOMEGA, OMEGAMAX, OMEGATL, PREC, PRECFOCK, SIGMA

Download

Si_BSE.tgz

Back to the main page