Practical guide to GW calculations: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
__TOC__ | |||
Available as of VASP.5.X. For details on the implementation and use of the ''GW'' routines we recommend the papers by Shishkin ''et al.''<ref name="shishkin-PRB74"/><ref name="shishkin-PRB75"/><ref name="shishkin-PRL99"/> and Fuchs ''et al.''<ref name="fuchs-PRB76"/> | Available as of VASP.5.X. For details on the implementation and use of the ''GW'' routines we recommend the papers by Shishkin ''et al.''<ref name="shishkin-PRB74"/><ref name="shishkin-PRB75"/><ref name="shishkin-PRL99"/> and Fuchs ''et al.''<ref name="fuchs-PRB76"/> | ||
Line 7: | Line 8: | ||
* [[GW recipes#scgw|GW and scGW calculations]]: selfconsistent ''GW'' ({{TAG|ALGO}}=GW or {{TAG|ALGO}}=scGW) | * [[GW recipes#scgw|GW and scGW calculations]]: selfconsistent ''GW'' ({{TAG|ALGO}}=GW or {{TAG|ALGO}}=scGW) | ||
* [[DM calculations with GW routines]]: Determination of the frequency dependent dielectric matrix (DM) using the ''GW'' routines | * [[DM calculations with GW routines]]: Determination of the frequency dependent dielectric matrix (DM) using the ''GW'' routines | ||
<span id="GWR> | |||
== Large systems == | |||
As of version 6, an additional 'R' can be added to the GW {{TAG|ALGO}} tags, ''i.e.'' {{TAG|ALGO}}=G0W0R, GW0R, scGW0R, GWR or scGWR to select the cubic scaling GW algorithms as described by Liu ''et. al.''<ref name="liu"/> | |||
</span> | |||
== Related Tags and Sections == | == Related Tags and Sections == | ||
Line 21: | Line 27: | ||
* {{TAG|LSELFENERGY}}: the frequency dependent self energy | * {{TAG|LSELFENERGY}}: the frequency dependent self energy | ||
* {{TAG|LWAVE}}: selfconsistent ''GW'' | * {{TAG|LWAVE}}: selfconsistent ''GW'' | ||
* {{TAG|NOMEGAPAR}}: frequency grid parallelization | |||
* {{TAG|NTAUPAR}}: time grid parallelization | |||
{{sc|GW calculations|Examples|Examples that use this tag}} | {{sc|GW calculations|Examples|Examples that use this tag}} | ||
Line 30: | Line 38: | ||
<ref name="shishkin-PRL99">[http://link.aps.org/doi/10.1103/PhysRevLett.99.246403 M. Shishkin, M. Marsman, and G. Kresse, Phys. Rev. Lett. 99, 246403 (2007).]</ref> | <ref name="shishkin-PRL99">[http://link.aps.org/doi/10.1103/PhysRevLett.99.246403 M. Shishkin, M. Marsman, and G. Kresse, Phys. Rev. Lett. 99, 246403 (2007).]</ref> | ||
<ref name="fuchs-PRB76">[http://link.aps.org/doi/10.1103/PhysRevB.76.115109 F. Fuchs, J. Furthmüller, F. Bechstedt, M. Shishkin, and G. Kresse, Phys. Rev. B 76, 115109 (2007).]</ref> | <ref name="fuchs-PRB76">[http://link.aps.org/doi/10.1103/PhysRevB.76.115109 F. Fuchs, J. Furthmüller, F. Bechstedt, M. Shishkin, and G. Kresse, Phys. Rev. B 76, 115109 (2007).]</ref> | ||
<ref name="liu">[http://journals.aps.org/prb/abstract/10.1103/PhysRevB.94.165109 P. Liu, M. Kaltak, J. Klimes and G. Kresse, Phys. Rev. B 94, 165109 (2016).]</ref> | |||
</references> | </references> | ||
---- | ---- |
Revision as of 13:48, 21 September 2017
Available as of VASP.5.X. For details on the implementation and use of the GW routines we recommend the papers by Shishkin et al.[1][2][3] and Fuchs et al.[4]
Recipes
- G0W0 calculations: single-shot G0W0 calculations
- GW0, scGW0 calculations: partially selfconsistent, with respect to G (ALGO=GW0 or ALGO=scGW0)
- GW and scGW calculations: selfconsistent GW (ALGO=GW or ALGO=scGW)
- DM calculations with GW routines: Determination of the frequency dependent dielectric matrix (DM) using the GW routines
Large systems
As of version 6, an additional 'R' can be added to the GW ALGO tags, i.e. ALGO=G0W0R, GW0R, scGW0R, GWR or scGWR to select the cubic scaling GW algorithms as described by Liu et. al.[5]
Related Tags and Sections
- ALGO for response functions and GW calculations
- LMAXFOCKAE
- NOMEGA, NOMEGAR number of frequency points
- LSPECTRAL: use the spectral method for the polarizability
- LSPECTRALGW: use the spectral method for the self-energy
- OMEGAMAX, OMEGATL and CSHIFT
- ENCUTGW: energy cutoff for response function
- ENCUTGWSOFT: soft cutoff for Coulomb kernel
- ODDONLYGW and EVENONLYGW: reducing the k-grid for the response functions
- LSELFENERGY: the frequency dependent self energy
- LWAVE: selfconsistent GW
- NOMEGAPAR: frequency grid parallelization
- NTAUPAR: time grid parallelization
References
- ↑ M. Shishkin and G. Kresse, Phys. Rev. B 74, 035101 (2006).
- ↑ M. Shishkin and G. Kresse, Phys. Rev. B 75, 235102 (2007).
- ↑ M. Shishkin, M. Marsman, and G. Kresse, Phys. Rev. Lett. 99, 246403 (2007).
- ↑ F. Fuchs, J. Furthmüller, F. Bechstedt, M. Shishkin, and G. Kresse, Phys. Rev. B 76, 115109 (2007).
- ↑ P. Liu, M. Kaltak, J. Klimes and G. Kresse, Phys. Rev. B 94, 165109 (2016).