Fcc Ni (revisited): Difference between revisions

From VASP Wiki
Line 67: Line 67:
*The example output for the spin up and down DOS shows an exchange splitting of approximately 0.5 eV:
*The example output for the spin up and down DOS shows an exchange splitting of approximately 0.5 eV:
[[File:Fig fccNi revised 1.png|700px]]
[[File:Fig fccNi revised 1.png|700px]]
*Proper initialization of magnetic moments is ver important:
**Too small initial magnetic moments will/may lead to nonmagnetic solution (by starting with an initial moment of 0.0 we arrive only to a magnetic of 0.002).
**Badly initialized calculations take longer to converge.
**Coexistence of low- and high spin solutions.


== Download ==
== Download ==

Revision as of 10:06, 12 June 2017

Task

Calculation of the partial DOS of spin-polarized fcc Ni, a ferromagnet.

Input

POSCAR

fcc:                             
 -10.93    
 0.5 0.5 0.0
 0.0 0.5 0.5
 0.5 0.0 0.5
   1  
Cartesian
0 0 0

INCAR

SYSTEM  = Ni fcc bulk 
ISTART  = 0
ISPIN   = 2
MAGMOM  = 1.0
ISMEAR  = -5
VOSKOWN = 1 
LORBIT  = 11
  • Spin-polarized calculation with initial magnetic moment of 1 µB.
  • Interpolation scheme of Vosko, Wilk and Nusair is used (see VOSKOWN=1).
  • lm-decomposed DOSCAR is created.
  • Tetrahedron method with Blöchl's corrections used for k-mesh integration.

KPOINTS

k-points
0
Gamma
 11 11 11
  0  0  0

Calculation

  • The output for the magnetic moments in the OSZICAR should look like the following:
       N        E
DAV:   1     0.139935173959E+02    0.13994E+02   -0.35801E+03  2338   0.828E+02
DAV:   2    -0.623612680591E+01   -0.20230E+02   -0.19281E+02  2282   0.123E+02
DAV:   3    -0.643764005251E+01   -0.20151E+00   -0.19906E+00  2536   0.140E+01
DAV:   4    -0.643786482872E+01   -0.22478E-03   -0.22442E-03  2344   0.459E-01
DAV:   5    -0.643786514671E+01   -0.31798E-06   -0.31687E-06  1832   0.173E-02    0.793E+00
...
DAV:   9    -0.545953126374E+01    0.48409E-02   -0.96206E-03  2946   0.839E-01    0.847E-02
DAV:  10    -0.545946513577E+01    0.66128E-04   -0.77007E-05  1364   0.126E-01
   1 F= -.54594651E+01 E0= -.54594651E+01  d E =0.000000E+00  mag=     0.5781
  • The l decomposed parts of the magnetic moment are written in the OUTCAR file:
 magnetization (x)


# of ion     s       p       p       tot
----------------------------------------
  1       -0.007  -0.026   0.625   0.591
  • The example output for the spin up and down DOS shows an exchange splitting of approximately 0.5 eV:

  • Proper initialization of magnetic moments is ver important:
    • Too small initial magnetic moments will/may lead to nonmagnetic solution (by starting with an initial moment of 0.0 we arrive only to a magnetic of 0.002).
    • Badly initialized calculations take longer to converge.
    • Coexistence of low- and high spin solutions.

Download

4_1_Ni.tgz


To the list of examples or to the main page