Determining the Magnetic Anisotropy: Difference between revisions
Vaspmaster (talk | contribs) |
No edit summary |
||
Line 11: | Line 11: | ||
---- | ---- | ||
*INCAR | *{{TAG|INCAR}} | ||
<pre> | <pre> | ||
NiO MAE | NiO MAE | ||
Line 59: | Line 59: | ||
</pre> | </pre> | ||
*KPOINTS | *{{TAG|KPOINTS}} | ||
<pre> | <pre> | ||
k-points | k-points | ||
Line 68: | Line 68: | ||
</pre> | </pre> | ||
*POSCAR | *{{TAG|POSCAR}} | ||
<pre> | <pre> | ||
NiO | NiO | ||
Line 83: | Line 83: | ||
</pre> | </pre> | ||
---- | ---- | ||
== Used INCAR Tags == | |||
{{TAG|AMIX}}, {{TAG|AMIX_MAG}}, {{TAG|BMIX}}, {{TAG|BMIX_MAG}}, {{TAG|EDIFF}}, {{TAG|ENCUT}}, {{TAG|GGA_COMPAT}}, {{TAG|I_CONSTRAINED_M}}, {{TAG|ICHARG}}, {{TAG|ISMEAR}},{{TAG|ISPIN}}, {{TAG|ISYM}}, {{TAG|LAMBDA}}, {{TAG|LCHARG}}, {{TAG|LDAU}}, {{TAG|LDAUJ}}, {{TAG|LDAUL}}, {{TAG|LDAUPRINT}}, {{TAG|LDAUTYPE}}, {{TAG|LDAUU}}, {{TAG|LMAXMIX}}, {{TAG|LORBIT}}, {{TAG|LREAL}}, {{TAG|LSORBIT}}, {{TAG|LWAVE}}, {{TAG|M_CONSTR}}, {{TAG|MAGMOM}}, {{TAG|NBANDS}}, {{TAG|NELMIN}}, {{TAG|PREC}}, {{TAG|RWIGS}}, {{TAG|SAXIS}}, {{TAG|SYSTEM}} | |||
== Download == | == Download == | ||
[http://www.vasp.at/vasp-workshop/examples/nio_noSOC.tgz nio_noSOC.tgz] | [http://www.vasp.at/vasp-workshop/examples/nio_noSOC.tgz nio_noSOC.tgz] | ||
---- | ---- | ||
[[VASP_example_calculations|To the list of examples]] or to the [[The_VASP_Manual|main page]] | [[VASP_example_calculations|To the list of examples]] or to the [[The_VASP_Manual|main page]] | ||
[[Category:Examples]] | [[Category:Examples]] |
Revision as of 12:50, 26 February 2017
Description: Magnetocrystalline Anisotropy Energy determined non-self-consistently
The Magnetocrystalline Anisotropy Energy is determined by rotating all spins according to different directions. First of all, an accurate (PREC = Accurate, LREAL = .False.) collinear calculation (using the vasp-std script) in the ground state has to be done. Next, the Spin-Orbit Coupling (LSORBIT = .True. ; using the vasp-ncl script) is took into account non-self-consistently (ICHARG = 11) for several spin orientations. In most of cases, the changes in energies are very low (sometimes, it could be about the micro-eV). The number of bands has to be twice compared to a collinear run).
To modify the orientation of the spins in the crystal, we consider the second approach describes here. For the MAGMOM-tag, the total local magnetic moment is written according to the z direction (necessarily, the x and y-directions are equal to 0). The spin orientation [uvw] is defined by the SAXIS-tag in the Cartesian frame. The Magnetocrystalline Anisotropy Energy is calculated by orientating the spins in different directions and the following equation : EMAE = E[uvw] - Emin, with Emin the energy of the most stable spin orientation.
More details are available in the SAXIS and LSORBIT pages.
Exercise : Determine the Magnetocrystalline Anisotropy Energy of NiO in a non self-consistent approach by orientating the spins along the following path : (2,2,2) --> (2,2,1) --> (2,2,0) --> ... --> (2,2,-6). Compare to the self-consistent approach.
NiO MAE SYSTEM = "NiO" Electronic minimization PREC = Accurate ENCUT = 450 EDIFF = 1E-7 LORBIT = 11 LREAL = .False. ISYM = -1 NELMIN = 6 # ICHARG = 11 # LCHARG = .FALSE. # LWAVE = .FALSE. # NBANDS = 52 # GGA_COMPAT = .FALSE. DOS ISMEAR = -5 Magnetism ISPIN = 2 MAGMOM = 2.0 -2.0 2*0.0 # MAGMOM = 0 0 2 0 0 -2 6*0 # Including Spin-orbit # LSORBIT = .True. # SAXIS = 1 0 0 # Quantization axis used to rotate all spins in a direction defined in the (O,x,y,z) Cartesian frame Orbital mom. LORBMOM = T Mixer AMIX = 0.2 BMIX = 0.00001 AMIX_MAG = 0.8 BMIX_MAG = 0.00001 GGA+U LDAU = .TRUE. LDAUTYPE = 2 LDAUL = 2 -1 LDAUU = 5.00 0.00 LDAUJ = 0.00 0.00 LDAUPRINT = 2 LMAXMIX = 4
k-points 0 gamma 4 4 4 0 0 0
NiO 4.17 1.0 0.5 0.5 0.5 1.0 0.5 0.5 0.5 1.0 2 2 Cartesian 0.0 0.0 0.0 1.0 1.0 1.0 0.5 0.5 0.5 1.5 1.5 1.5
Used INCAR Tags
AMIX, AMIX_MAG, BMIX, BMIX_MAG, EDIFF, ENCUT, GGA_COMPAT, I_CONSTRAINED_M, ICHARG, ISMEAR,ISPIN, ISYM, LAMBDA, LCHARG, LDAU, LDAUJ, LDAUL, LDAUPRINT, LDAUTYPE, LDAUU, LMAXMIX, LORBIT, LREAL, LSORBIT, LWAVE, M_CONSTR, MAGMOM, NBANDS, NELMIN, PREC, RWIGS, SAXIS, SYSTEM
Download
To the list of examples or to the main page