EDIFF: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 6: Line 6:
{{NB|mind|In most cases, the convergence speed is exponential, so often, the cost for the few additional iterations is small. For high precision calculations, we recommend decreasing {{TAG|EDIFF}} to 1E-6. For finite difference calculations (e.g. phonons), even {{TAG|EDIFF}} {{=}} 1E-7 might be required in order to obtain very accurate results. }}  
{{NB|mind|In most cases, the convergence speed is exponential, so often, the cost for the few additional iterations is small. For high precision calculations, we recommend decreasing {{TAG|EDIFF}} to 1E-6. For finite difference calculations (e.g. phonons), even {{TAG|EDIFF}} {{=}} 1E-7 might be required in order to obtain very accurate results. }}  


== Related Tags and Sections ==
== Related tags and articles ==
{{TAG|EDIFFG}}
{{TAG|EDIFFG}}


Line 12: Line 12:


----
----
[[The_VASP_Manual|Contents]]


[[Category:INCAR]][[Category:Electronic minimization]]
[[Category:INCAR tag]][[Category:Electronic minimization]]

Revision as of 14:11, 8 April 2022

EDIFF = [real]
Default: EDIFF =  

Description: EDIFF specifies the global break condition for the electronic SC-loop. EDIFF is specified in units of eV.


The relaxation of the electronic degrees of freedom stops if the total (free) energy change and the band-structure-energy change ('change of eigenvalues') between two steps are both smaller than EDIFF (in eV). For EDIFF=0, strictly NELM electronic self-consistency steps will be performed.

Mind: In most cases, the convergence speed is exponential, so often, the cost for the few additional iterations is small. For high precision calculations, we recommend decreasing EDIFF to 1E-6. For finite difference calculations (e.g. phonons), even EDIFF = 1E-7 might be required in order to obtain very accurate results.

Related tags and articles

EDIFFG

Examples that use this tag