ML LCOUPLE: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
Line 13: Line 13:


<math>
<math>
H (\lambda) = \sum\limits_{i=1}{N_{a}} \frac{|\mathbf{p}_{i}|^2}{2m_{i}} + \sum\limits_{i \notin M} U_{i}(\lambda) + \lambd \sum\limits_{i \in M} U_{i}(\lambda) + \sum\limits_{i}{N_{a}} U_{i,\mathbf{atom}}.  
H (\lambda) = \sum\limits_{i=1}^{N_{a}} \frac{|\mathbf{p}_{i}|^2}{2m_{i}} + \sum\limits_{i \notin M} U_{i}(\lambda) + \lambd \sum\limits_{i \in M} U_{i}(\lambda) + \sum\limits_{i}^{N_{a}} U_{i,\mathbf{atom}}.  
</math>
</math>



Revision as of 15:00, 8 June 2021

ML_FF_LCOUPLE_MB = [logical]
Default: ML_FF_LCOUPLE_MB = .FALSE. 

Description: This tag specifies whether coupling parameters are used for the calculation of chemical potentials is used or not within the machine learning force field method.


In thermodynamic integration a coupling parameter is introduced to the Hamiltonian to smoothly switch between a "non-interacting" reference state and a "fully-interacting" state. The change of the free energy along this path is written as

Using machine learning force fields the Hamiltonian can be written as

Failed to parse (Conversion error. Server ("cli") reported: "[INVALID]"): {\displaystyle H (\lambda) = \sum\limits_{i=1}^{N_{a}} \frac{|\mathbf{p}_{i}|^2}{2m_{i}} + \sum\limits_{i \notin M} U_{i}(\lambda) + \lambd \sum\limits_{i \in M} U_{i}(\lambda) + \sum\limits_{i}^{N_{a}} U_{i,\mathbf{atom}}. }

Related Tags and Sections

ML_FF_LMLFF, ML_FF_NATOM_COUPLED_MB, ML_FF_ICOUPLE_MB, ML_FF_RCOUPLE_MB

Examples that use this tag