Cd Si volume relaxation: Difference between revisions

From VASP Wiki
 
(One intermediate revision by one other user not shown)
Line 44: Line 44:
*From equation of states we determine lattice parameter of <math>a=5.4687</math> &Aring; (volume scan plus Murnaghan EOS using {{TAG|ENMAX}}=400).
*From equation of states we determine lattice parameter of <math>a=5.4687</math> &Aring; (volume scan plus Murnaghan EOS using {{TAG|ENMAX}}=400).


*From relaxations using {{TAG|IBRION}}=2 and {{TAG|ISIF}}=3 we get <math>a=5.4684</math> <math>\AA</math>.
*From relaxations using {{TAG|IBRION}}=2 and {{TAG|ISIF}}=3 we get <math>a=5.4684</math> &Aring;.


*Difference can be due to pulay stress (especially when the relaxation starts far away from equilibrium):  
*Difference can be due to pulay stress (especially when the relaxation starts far away from equilibrium):  
Line 76: Line 76:


== Download ==
== Download ==
[http://www.vasp.at/vasp-workshop/examples/diamondSivolrel.tgz diamondSivolrel.tgz]
[[Media:DiamondSivolrel.tgz| diamondSivolrel.tgz]]
   
   
{{Template:Bulk_systems}}
{{Template:Bulk_systems}}

Latest revision as of 08:32, 14 November 2019

Task

Relaxation of the internal coordinates, volume and cell shape in cd Si.

Input

POSCAR

cubic diamond
   5.5
 0.0    0.5     0.5
 0.5    0.0     0.5
 0.5    0.5     0.0
  2
Direct
 -0.125 -0.125 -0.125
  0.125  0.125  0.125

INCAR

System = diamond Si
ISMEAR = 0; SIGMA = 0.1;
ENMAX  =  240
IBRION = 2; ISIF=3 ; NSW=15
EDIFF  = 0.1E-04
EDIFFG = -0.01
  • IBRION=2 conjugate-gradient algorithm.
  • ISIF=3 change of internal parameter, shape and volume simultaneously.

KPOINTS

k-points
 0
Monkhorst Pack
 11 11 11
 0  0  0

Calculation

  • To determine the equilibrium volume we can:
    • Fit the energz over a certain volume range to an equation of state (see cd_Si).
    • Alternatively we relax the structure with VASP "on the fly" (IBRION=2 and ISIF=3)
  • From equation of states we determine lattice parameter of Å (volume scan plus Murnaghan EOS using ENMAX=400).
  • From relaxations using IBRION=2 and ISIF=3 we get Å.
  • Difference can be due to pulay stress (especially when the relaxation starts far away from equilibrium):
-------------------------------------------------------------------------------------
Total       0.00155     0.00155     0.00155    -0.00000     -0.00000      0.00000
in kB       0.06056     0.06056     0.06056    -0.00000     -0.00000      0.00000
external pressure =        0.06 kB  Pullay stress =          0.00 kB
   
   
VOLUME and BASIS-vectors are now :
-----------------------------------------------------------------------------
 energy-cutoff :      400.00
 volume of cell :      40.88
     direct lattice vectors                 reciprocal lattice vectors
    0.000000000  2.734185321  2.734185321    -0.182869828  0.182869828  0.182869828
    2.734185321  0.000000000  2.734185321     0.182869828 -0.182869828  0.182869828
    2.734185321  2.734185321  0.000000000     0.182869828  0.182869828 -0.182869828


  • To remedy this increase the plane wave cutoff by at least 30% (here we used ENMAX=400 instead of 240) and use a small EDIFF.

Summary

  • Calculation of the equilibrium volume:
    • FIt the energy over a certain volume range to an equation of state.
    • When internal degrees of freedom exist (e.g. c/a), the structure must be optimized. Use a conjugate-gradient algorithm (IBRION=2) and at each volume do e.g. 10 ionic steps (NSW=10) and allow change of internal parameters and shape (ISIF=4).
  • Simpler but less reliable: relaxing all degrees of freedom including volume.
    • To relax all degrees of freedom use ISIF=3 (internal coordinates, shape and volume).
    • Mind pulay stress problem. Increase plane wave cutoff by 25-30% when the volume is allowed to change.

Download

diamondSivolrel.tgz

Back to the main page.