ML SIGV0: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
 
(16 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{TAGDEF|ML_FF_SIGV0_MB|[real]|1.0}}
{{DISPLAYTITLE:ML_SIGV0}}
{{TAGDEF|ML_SIGV0|[real]|1.0}}


Description: This flag sets the initial noise parameter in the machine learning force field method.
Description: This flag sets the noise parameter <math>s_{\mathrm{v}}</math> (see [[Machine learning force field: Theory#Bayesian linear regression|here]] for definition) for the fitting in the machine learning force field method.
----
----
For the optimization of the noise parameter <math>\sigma_{\mathrm{v}}^{2}</math> see following section:
If the regularization needs to be controlled manually, like e.g. in the fitting via singular value decomposition ({{TAG|ML_MODE}}=''REFIT'' or {{TAG|ML_IALGO_LINREG}}=4), the best is to keep this parameter constant at 1 and control the regularization via the precision parameter <math>s_{\mathrm{w}}</math> (see {{TAG|ML_SIGW0}}).
{{TAG|On-the-fly machine learning force field generation using Bayesian linear regression}}.


== Related Tags and Sections ==
For the theory of this regularization parameter see [[Machine learning force field: Theory#Regression|this section]].
{{TAG|ML_FF_LMLFF}}, {{TAG|ML_FF_IREG_MB}}, {{TAG|ML_FF_SIGW0_MB}}


{{sc|ML_FF_SIGV0_MB|Examples|Examples that use this tag}}
== Related tags and sections ==
{{TAG|ML_LMLFF}}, {{TAG|ML_IREG}}, {{TAG|ML_SIGW0}}, {{TAG|ML_IALGO_LINREG}}
 
{{sc|ML_SIGV0|Examples|Examples that use this tag}}
----
----


[[Category:INCAR]][[Category:Machine Learning]][[Category:Machine Learned Force Fields]][[Category:VASP6]]
[[Category:INCAR tag]][[Category:Machine-learned force fields]]

Latest revision as of 16:05, 3 July 2023

ML_SIGV0 = [real]
Default: ML_SIGV0 = 1.0 

Description: This flag sets the noise parameter (see here for definition) for the fitting in the machine learning force field method.


If the regularization needs to be controlled manually, like e.g. in the fitting via singular value decomposition (ML_MODE=REFIT or ML_IALGO_LINREG=4), the best is to keep this parameter constant at 1 and control the regularization via the precision parameter (see ML_SIGW0).

For the theory of this regularization parameter see this section.

Related tags and sections

ML_LMLFF, ML_IREG, ML_SIGW0, ML_IALGO_LINREG

Examples that use this tag