ML LHEAT: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
 
(17 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{TAGDEF|ML_FF_LHEAT_MB|[logical]|.FALSE.}}
{{DISPLAYTITLE:ML_LHEAT}}
{{TAGDEF|ML_LHEAT|[logical]|.FALSE.}}


Description: This flag specifies whether the heat flux is calculated or not in the machine learning force field method.
Description: This tag specifies whether the heat flux is calculated or not in the machine learning force field method.
----
----
The heat flux within machine learning force fields is decomposed into atomic contributions written as
<math>
\mathbf{q}(t) = \sum\limits_{i=1}^{N_{a}} \frac{d}{dt} \left( \mathbf{r}_{i} E_{i} \right),
</math>
<math>
E_{i}=\frac{m_{i} \left|\mathbf{v}_{i} \right|^{2}}{2} + U_{i}
</math>
where <math>\mathbf{r}_{i}</math>, <math>\mathbf{v}_{i}</math> and <math>E_{i}</math> denote the position vector, velocity and energy of atom <math>i</math>, respectively. The number of atoms in the system is denoted by <math>N_{a}</math>. The heat flux can be further rewritten as
<math>
\mathbf{q}(t) = \sum\limits_{i=1}^{N_{a}} \mathbf{v}_{i} E_{i} + \sum\limits_{i=1}^{N_{a}} \mathbf{r}_{i} \left( m_{i} \mathbf{v}_{i} \cdot \frac{d\mathbf{v}_{i}}{dt} + \sum\limits_{j=1}^{N_{a}} \mathbf{v}_{j} \cdot \nabla_{j} U_{i} \right).
</math>
Using the equation of motions
<math>
m_{i} \frac{d \mathbf{v}_{i}}{dt} = - \sum\limits_{j=1}^{N_{a}} \nabla_{i} U_{j}
</math>
the heat flux can be simplified to
<math>
\mathbf{q}(t) = \sum\limits_{i=1}^{N_{a}} \mathbf{v}_{i} E_{i} - \sum\limits_{i=1}^{N_{a}} \sum\limits_{j=1}^{N_{a}} \mathbf{r}_{i} \left( \mathbf{v}_{i} \cdot \nabla_{i} U_{j} \right) + \sum\limits_{i=1}^{N_{a}} \sum\limits_{j=1}^{N_{a}} \mathbf{r}_{i} \left( \mathbf{v}_{j} \cdot \nabla_{j} U_{i} \right) = \sum\limits_{i=1}^{N_{a}} \mathbf{v}_{i} E_{i} + \sum\limits_{i=1}^{N_{a}} \sum\limits_{j=1}^{N_{a}} \left( \mathbf{r}_{i} - \mathbf{r}_{j} \right) \left( \mathbf{v}_{j} \cdot \nabla_{j} U_{i} \right).
</math>
Finally (in a post-processing step), the thermal conductivity at temperature <math>T</math> in the Green-Kubo formalism can be calculated from the correlation of the heat flux <math>\mathbf{q}</math> as
<math>
\kappa = \frac{1}{3Vk_{b}T^{2}} \int\limits_{0}^{\infty} \langle \mathbf{q}(t) \cdot \mathbf{q}(0) \rangle dt,
</math>
where <math>V</math> and <math>k_{b}</math> denotes the volume of the system and the Boltzmann constant, respectively.
The heat flux is written to the file {{TAG|ML_HEAT}}.
The heat flux is written to the file {{TAG|ML_HEAT}}.


== Related Tags and Sections ==
== Related tags and articles ==
{{TAG|ML_FF_MLFF}, {{TAG|ML_FF_LEATOM_MB}}
{{TAG|ML_LMLFF}}, {{TAG|ML_LEATOM}}


{{sc|ML_FF_LHEAT_MB|Examples|Examples that use this tag}}
{{sc|ML_LHEAT|Examples|Examples that use this tag}}
----
----


[[Category:INCAR]][[Category:Machine Learning]][[Category:Machine Learned Force Fields]][[Category:VASP6]]
[[Category:INCAR tag]][[Category:Machine-learned force fields]]

Latest revision as of 07:24, 10 May 2022

ML_LHEAT = [logical]
Default: ML_LHEAT = .FALSE. 

Description: This tag specifies whether the heat flux is calculated or not in the machine learning force field method.


The heat flux within machine learning force fields is decomposed into atomic contributions written as

where , and denote the position vector, velocity and energy of atom , respectively. The number of atoms in the system is denoted by . The heat flux can be further rewritten as

Using the equation of motions

the heat flux can be simplified to

Finally (in a post-processing step), the thermal conductivity at temperature in the Green-Kubo formalism can be calculated from the correlation of the heat flux as


where and denotes the volume of the system and the Boltzmann constant, respectively.


The heat flux is written to the file ML_HEAT.

Related tags and articles

ML_LMLFF, ML_LEATOM

Examples that use this tag