ML IREG: Difference between revisions

From VASP Wiki
(Created page with "{{TAGDEF|ML_FF_IREG_MB|[integer]|2}} Description: ---- == Related Tags and Sections == {{sc|ML_FF_IREG_MB|Examples|Examples that use this tag}} ---- Category:INCARCa...")
 
 
(12 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{TAGDEF|ML_FF_IREG_MB|[integer]|2}}
{{DISPLAYTITLE:ML_IREG}}
{{TAGDEF|ML_IREG|[integer]|2}}


Description:
Description: This tag specifies whether the regularization parameters are kept constant or not in the machine learning force field method.
----
----
The following cases are possible for this tag:
*{{TAG|ML_IREG}}=1: The (initial) precision ({{TAG|ML_SIGV0}}) and noise ({{TAG|ML_SIGW0}}) parameters are kept constant.
*{{TAG|ML_IREG}}=2: The parameters are optimized (default).


== Related Tags and Sections ==
For the optimization of the noise parameter <math>\sigma_{\mathrm{v}}^{2}</math> see [[Machine learning force fields: Theory#Bayesian error estimation|this section]].


{{sc|ML_FF_IREG_MB|Examples|Examples that use this tag}}
== Related tags and articles ==
{{TAG|ML_LMLFF}}, {{TAG|ML_SIGV0}}, {{TAG|ML_SIGW0}}
 
{{sc|ML_IREG|Examples|Examples that use this tag}}
----
----


[[Category:INCAR]][[Category:Machine Learning]][[Category:Machine Learned Force Fields]]
[[Category:INCAR tag]][[Category:Machine-learned force fields]]

Latest revision as of 13:24, 8 April 2022

ML_IREG = [integer]
Default: ML_IREG = 2 

Description: This tag specifies whether the regularization parameters are kept constant or not in the machine learning force field method.


The following cases are possible for this tag:

For the optimization of the noise parameter see this section.

Related tags and articles

ML_LMLFF, ML_SIGV0, ML_SIGW0

Examples that use this tag