ENCUTGW: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
 
(26 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{TAGDEF|ENCUTGW|[real] (energy cutoff for response function| 2/3 {{TAG|ENCUT}}}}
{{TAGDEF|ENCUTGW|[real]| 2/3 {{TAG|ENCUT}}}}


Description: The parameter {{TAG|ENCUTGW}} controls the basis set for the response functions
 
Description: The tag {{TAG|ENCUTGW}} sets the energy cutoff for the response function. It controls the basis set for the response functions
in exactly the same manner as {{TAG|ENCUT}} does for the orbitals.
in exactly the same manner as {{TAG|ENCUT}} does for the orbitals.
__TOC__
----
----
In the GW caseupdates of the response function dominate the computational work load:
In GW and random-phase-approximation (RPA) calculationsstoring and manipulating the response function dominates the computational work load:


<math>\frac{1}{\Omega} \sum_{n,n',{\mathbf{k}}}2 w_{{\mathbf{k}}}
<math>\chi_{{\mathbf{q}}}^0 ({\mathbf{G}}, {\mathbf{G}}', \omega)=\frac{1}{\Omega} \sum_{n,n',{\mathbf{k}}}2 w_{{\mathbf{k}}}
  (f_{n'{\mathbf{k}}+{\mathbf{q}}} - f_{n{\mathbf{k}}})   
  (f_{n'{\mathbf{k}}+{\mathbf{q}}} - f_{n{\mathbf{k}}})   
\times  \frac{\langle \psi_{n{\mathbf{k}}}| e^{-i ({\mathbf{q}}+{\mathbf{G}}){\mathbf{r}}} | \psi_{n'{\mathbf{k}}+{\mathbf{q}}}\rangle
\times  \frac{\langle \psi_{n{\mathbf{k}}}| e^{-i ({\mathbf{q}}+{\mathbf{G}}){\mathbf{r}}} | \psi_{n'{\mathbf{k}}+{\mathbf{q}}}\rangle
Line 15: Line 20:
the response function <math>\chi_{{\mathbf{q}}}^0 ({\mathbf{G}}, {\mathbf{G}}', \omega)</math>.
the response function <math>\chi_{{\mathbf{q}}}^0 ({\mathbf{G}}, {\mathbf{G}}', \omega)</math>.


Tests have shown that choosing {{TAG|ENCUTGW}}= 2/3 {{TAG|ENCUT}} yields
Our experience suggests that choosing {{TAG|ENCUTGW}}= 2/3 {{TAG|ENCUT}} yields reasonable results at fairly modest computational cost, although, the response function contains contributions up to twice the plane wave cutoff <math>G_{\rm cut}</math>, see {{TAG|ALGO}} tag. Furthermore, RPA correlation energies are reported using an internal extrapolation of the correlation energy by varying the value of {{TAG|ENCUTGW}} inside VASP between the largest value given in the {{TAG|INCAR}} file and smaller values {{cite|harl:prb:08}}. Mind: The extrapolated value is only reliable, if {{TAG|ENCUTGW}} is smaller then {{TAG|ENCUT}}. The cutoff extrapolation with respect to {{TAG|ENCUTGW}} would be precise if the plane wave basis for the orbitals were infinite. Again, the VASP defaults yield very reasonable values for the extrapolated correlation energy. In fact, it is unwise to increase {{TAG|ENCUTGW}} only, without increasing {{TAG|ENCUT}}. To converge RPA correlation energies, simply increase {{TAG|ENCUT}} and the number of orbitals, and use the VASP default for {{TAG|ENCUTGW}}.
reasonable results at fairly modest computational times. In principle, however, the response function
{{NB|mind|More details on how the infinite basis set limit is extrapolated in RPA/ACFDT can be found [[ACFDT/RPA_calculations#Basis_set_convergence|here]].}}
contains contributions up to twice the plane wave cutoff <math>G_{\rm cut}</math>
For quasiparticle (QP) bandgaps, it is sometimes possible to set {{TAG|ENCUTGW}} to values between 150 to 200 eV, and even 100 eV can yield
(see Sec. {{TAG|ALGO-WRAP}}). Since the diagonal of the dielectric matrix
gaps that are accurate to within a few tens of an eV for main group elements. Be aware, however, that the absolute values of the QP energies depend inverse proportionally on the number of plane waves. Thus, the convergence of absolute QP energies is very slow, although QP gaps might seem converged.
converges rapidly to one, such a large cutoff is hardly ever required
 
(note that some version of VASP might crash if {{TAG|ENCUTGW}} <math>\ge</math> {{TAG|ENCUT}}).
The recommended procedure to obtain accurate QP energies is discussed in the reference below. Specifically,  for reference type calculations we recommend the following procedure:
Furthermore, in most cases, it is even possible to set {{TAG|ENCUTGW}}  
 
to a value between 150 to 200 eV, and even 100 eV gives usually
* Use the default for {{TAG|ENCUTGW}}, or even decrease {{TAG|ENCUTGW}} to half the value of {{TAG|ENCUT}}.
QP shifts that are accurate to within a few hundreds of an eV (0.01-0.02 eV).
* Calculate all orbitals that the plane-wave basis set allows to calculate. This number can be determined by searching for "maximum number of plane-waves" in the ground-state DFT {{TAG|OUTCAR}} file, and setting {{TAG|NBANDS}} to this value.
This can help to speed up the calculations
* Increase {{TAG|ENCUT}} systematically and plot the QP energies versus the number of plane-wave coefficients, which equals the number of orbitals. This means {{TAG|ENCUTGW}} and {{TAG|NBANDS}} increase as {{TAG|ENCUT}} increases.
significantly and reduces the memory requirements substantially.


This procedure can be carried out using few k points. Other commonly applied methods can yield less accurate results and are not considered to be reliable.


The flag {{TAG|PRECFOCK}} determines the FFT grid in all GW (and Hartree-Fock) related routines.
== FFT grid and {{TAG|PRECFOCK}} ==
For small systems (which are often dominated by FFT operations),  
The {{TAG|PRECFOCK}} tag determines the fast Fourier transformation (FFT) grid in all GW (and Hartree-Fock) related routines. For small systems, the computational time is often dominated by FFT operations. Therefore, the {{TAG|PRECFOCK}} tag can have a significant impact on the compute time for QP calculations. For large systems, the FFT's usually do not dominate the computational workload, and savings are expected to be small for {{TAG|PRECFOCK}} = ''fast''.  
it can have a significant impact on the compute time for  
QP shifts are usually not very sensitive to the setting of {{TAG|PRECFOCK}} and therefore there is no harm in setting {{TAG|PRECFOCK}} = ''fast''), whereas for RPA calculations we recommend to set {{TAG|PRECFOCK}} = ''normal'' to avoid numerical errors.
QP calculations. For large systems, the FFT's usually do not
dominating the computational work load and savings are expected to be small for {{TAG|PRECFOCK}} = ''fast''.  
QP shifts are usually not very sensitive to the setting of {{TAG|PRECFOCK}}
(and it therefore does not harm to set  {{TAG|PRECFOCK}} = ''fast'', whereas for
RPA calculations we recommend to set {{TAG|PRECFOCK}} = ''normal'' to avoid numerical errors.


== Related Tags and Sections ==
== Related tags and articles ==
{{TAG|PRECFOCK}},
{{TAG|PRECFOCK}},
{{TAG|ENCUT}},
{{TAG|ENCUT}},
{{TAG|ENCUTGWSOFT}},
{{TAG|ENCUTGWSOFT}},
{{TAG|GW calculations}}
{{TAG|GW calculations}},
[[ACFDT/RPA_calculations#Basis_set_convergence|Basis set convergence]]
 
{{sc|ENCUTGW|Examples|Examples that use this tag}}


== Further reading ==
== Further reading ==
*A comprehensive study of the performance of the convergence of GW calculations can be found <ref name="klimes:prb:14"/>. Generally QP energies converge like one over the number of orbitals and one over the number of plane waves in the response function.
*Generally, QP energies converge like one over the number of orbitals and one over the number of plane waves in the response function. For basis set converged calculations, we recommend using the strategies outlined in Ref. {{cite|klimes:prb:14}}, which contains a comprehensive study of the performance of the convergence of GW calculations.
 
== References ==




== Example Calculations using this Tag ==
{{TAG|bandstructure of SrVO3 in GW}}, {{TAG|Dielectric properties of Si using BSE}}, {{TAG|Dielectric properties of Si using BSE}}, {{TAG|Model BSE calculation on Si}}
----
----
[[The_VASP_Manual|Contents]]


[[Category:INCAR]][[Category:GW]]
[[Category:INCAR tag]][[Category:Many-body perturbation theory]][[Category:GW]]

Latest revision as of 14:07, 24 April 2023

ENCUTGW = [real]
Default: ENCUTGW = 2/3 ENCUT 


Description: The tag ENCUTGW sets the energy cutoff for the response function. It controls the basis set for the response functions in exactly the same manner as ENCUT does for the orbitals.



In GW and random-phase-approximation (RPA) calculations, storing and manipulating the response function dominates the computational work load:

ENCUTGW controls how many vectors are included in the the response function .

Our experience suggests that choosing ENCUTGW= 2/3 ENCUT yields reasonable results at fairly modest computational cost, although, the response function contains contributions up to twice the plane wave cutoff , see ALGO tag. Furthermore, RPA correlation energies are reported using an internal extrapolation of the correlation energy by varying the value of ENCUTGW inside VASP between the largest value given in the INCAR file and smaller values [1]. Mind: The extrapolated value is only reliable, if ENCUTGW is smaller then ENCUT. The cutoff extrapolation with respect to ENCUTGW would be precise if the plane wave basis for the orbitals were infinite. Again, the VASP defaults yield very reasonable values for the extrapolated correlation energy. In fact, it is unwise to increase ENCUTGW only, without increasing ENCUT. To converge RPA correlation energies, simply increase ENCUT and the number of orbitals, and use the VASP default for ENCUTGW.

Mind: More details on how the infinite basis set limit is extrapolated in RPA/ACFDT can be found here.

For quasiparticle (QP) bandgaps, it is sometimes possible to set ENCUTGW to values between 150 to 200 eV, and even 100 eV can yield gaps that are accurate to within a few tens of an eV for main group elements. Be aware, however, that the absolute values of the QP energies depend inverse proportionally on the number of plane waves. Thus, the convergence of absolute QP energies is very slow, although QP gaps might seem converged.

The recommended procedure to obtain accurate QP energies is discussed in the reference below. Specifically, for reference type calculations we recommend the following procedure:

  • Use the default for ENCUTGW, or even decrease ENCUTGW to half the value of ENCUT.
  • Calculate all orbitals that the plane-wave basis set allows to calculate. This number can be determined by searching for "maximum number of plane-waves" in the ground-state DFT OUTCAR file, and setting NBANDS to this value.
  • Increase ENCUT systematically and plot the QP energies versus the number of plane-wave coefficients, which equals the number of orbitals. This means ENCUTGW and NBANDS increase as ENCUT increases.

This procedure can be carried out using few k points. Other commonly applied methods can yield less accurate results and are not considered to be reliable.

FFT grid and PRECFOCK

The PRECFOCK tag determines the fast Fourier transformation (FFT) grid in all GW (and Hartree-Fock) related routines. For small systems, the computational time is often dominated by FFT operations. Therefore, the PRECFOCK tag can have a significant impact on the compute time for QP calculations. For large systems, the FFT's usually do not dominate the computational workload, and savings are expected to be small for PRECFOCK = fast. QP shifts are usually not very sensitive to the setting of PRECFOCK and therefore there is no harm in setting PRECFOCK = fast), whereas for RPA calculations we recommend to set PRECFOCK = normal to avoid numerical errors.

Related tags and articles

PRECFOCK, ENCUT, ENCUTGWSOFT, GW calculations, Basis set convergence

Examples that use this tag

Further reading

  • Generally, QP energies converge like one over the number of orbitals and one over the number of plane waves in the response function. For basis set converged calculations, we recommend using the strategies outlined in Ref. [2], which contains a comprehensive study of the performance of the convergence of GW calculations.

References