LEFG: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
 
(18 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{TAGDEF|LEFG|.TRUE. {{!}} .FALSE. | .FALSE.}}
{{TAGDEF|LEFG|.TRUE. {{!}} .FALSE. | .FALSE.}}


Description: The {{TAG|LEFG}} computes the {{TAG|Electric Field Gradient}} at positions of the atomic nuclei.
Description: The {{TAG|LEFG}} computes the electric field gradient (EFG) at positions of the atomic nuclei.
----
----
For {{TAG|LEFG}}=.TRUE., the electric field gradient tensors at the positions of the atomic nuclei are calculated using the method of Petrilli ''et al.'' {{Cite|petrilli:prb:1998}}.  
For {{TAG|LEFG}}=.TRUE., the electric field gradient tensors at the positions of the atomic nuclei are calculated using the method of Petrilli ''et al.'' {{Cite|petrilli:prb:1998}}.  
Line 13: Line 13:
For so-called "quadrupolar nuclei", ''i.e.'', nuclei with nuclear spin I>1/2, NMR experiments can
For so-called "quadrupolar nuclei", ''i.e.'', nuclei with nuclear spin I>1/2, NMR experiments can
access ''V''<sub>zz</sub> and η.
access ''V''<sub>zz</sub> and η.
{{NB|Mind|Attaining convergence can require somewhat smaller {{TAG|EDIFF}} than the default of <tt>1.e-4</tt>
and somewhat larger cutoff {{TAG|ENCUT}} than default with {{TAG|PREC}}=A. Moreover, the calculation of
EFGs typically requires high quality PAW data sets. Semi-core electrons can be important (check with
<tt>*_pv</tt> or <tt>*_sv</tt> POTCARs) as well as explicit inclusion of augmentation channel(s) with ''d''-projectors.}}


To convert the ''V''<sub>zz</sub> values into the ''C''<sub>q</sub> often encountered in NMR literature, one has to specify the nuclear quadrupole moment by means of the {{TAG|QUAD_EFG}}-tag.  
To convert the ''V''<sub>zz</sub> values into the ''C''<sub>q</sub> often encountered in NMR literature, one has to specify the nuclear quadrupole moment by means of the {{TAG|QUAD_EFG}}-tag.  
{{NB|mind|Several definitions of <math>C_q</math> are used in the NMR community, ensure that you are comparing between the same definitions in calculation and experiment.}}
{{NB|important|For heavy nuclei inaccuracies are to be expected because of an incomplete treatment of relativistic effects.}}


The output of <math>C_q</math> is in MHz. See references {{Cite|pyykko:molphys:2008}} and Ref. {{Cite|pyykko:molphys:2017}} for a compilation of nuclear quadrupole moments.
==Output==
The EFG is listed atom-wise after the SCF cycle has been completed. First, the full 3x3 tensor is printed:


<math>C_q = \frac{e Q V_{zz}}{h}</math>
<pre>
  Electric field gradients (V/A^2)
---------------------------------------------------------------------
  ion      V_xx      V_yy      V_zz      V_xy      V_xz      V_yz
---------------------------------------------------------------------
    1        -        -        -        -        -        -     
</pre>


Suppose a solid contains Al, C, and Si, then the {{TAG|QUAD_EFG}} tag could read:
The tensor is then diagonalized and reprinted:


  QUAD_EFG = 146.6 33.27 0.0
<pre>
  Electric field gradients after diagonalization (V/A^2)
  (convention: |V_zz| > |V_xx| > |V_yy|)
  ----------------------------------------------------------------------
  ion      V_xx      V_yy      V_zz    asymmetry (V_yy - V_xx)/ V_zz
----------------------------------------------------------------------
    1      -        -        -            -       
</pre>


<math>^{27}\mathrm{Al}</math> is the stable isotope of Al with a natural abundance of 100% and <math>Q = 146.6</math>. The stable isotopes <math>^{12}\mathrm{C}</math> and <math>^{13}\mathrm{C}</math> are not quadrupolar nuclei, however, the radioactive <math>^{11}\mathrm{C}</math> is. It has <math>Q = 33.27</math>. For Si it is pointless to calculate a <math>C_q</math> since all stable isotopes have <math>I \le 1/2</math>. No moments are known for the other isotopes.
The corresponding eigenvectors are printed atom-wise. Finally, the quadrupolar parameters are presented, which are commonly reported in NMR experiments.  


{{NB|Important|for heavy nuclei inaccuracies are to be expected because of an incomplete treatment of relativistic effects.}}
<pre>
            NMR quadrupolar parameters
 
  Cq : quadrupolar parameter    Cq=e*Q*V_zz/h
  eta: asymmetry parameters    (V_yy - V_xx)/ V_zz
  Q  : nuclear electric quadrupole moment in mb (millibarn)
----------------------------------------------------------------------
  ion      Cq(MHz)      eta      Q (mb)
----------------------------------------------------------------------
    1        -            -        -                     
</pre>


== Related tags and articles ==
== Related tags and articles ==

Latest revision as of 15:25, 7 March 2025

LEFG = .TRUE. | .FALSE.
Default: LEFG = .FALSE. 

Description: The LEFG computes the electric field gradient (EFG) at positions of the atomic nuclei.


For LEFG=.TRUE., the electric field gradient tensors at the positions of the atomic nuclei are calculated using the method of Petrilli et al. [1].

The EFG tensors are symmetric. The principal components Vii and asymmetry parameter η are printed for each atom. Following convention the principal components Vii are ordered such that:

The asymmetry parameter is defined as . For so-called "quadrupolar nuclei", i.e., nuclei with nuclear spin I>1/2, NMR experiments can access Vzz and η.

To convert the Vzz values into the Cq often encountered in NMR literature, one has to specify the nuclear quadrupole moment by means of the QUAD_EFG-tag.

Mind: Several definitions of are used in the NMR community, ensure that you are comparing between the same definitions in calculation and experiment.
Important: For heavy nuclei inaccuracies are to be expected because of an incomplete treatment of relativistic effects.

Output

The EFG is listed atom-wise after the SCF cycle has been completed. First, the full 3x3 tensor is printed:

  Electric field gradients (V/A^2)
 ---------------------------------------------------------------------
  ion       V_xx      V_yy      V_zz      V_xy      V_xz      V_yz
 ---------------------------------------------------------------------
    1        -         -         -         -         -         -       

The tensor is then diagonalized and reprinted:

  Electric field gradients after diagonalization (V/A^2)
  (convention: |V_zz| > |V_xx| > |V_yy|)
 ----------------------------------------------------------------------
  ion       V_xx      V_yy      V_zz     asymmetry (V_yy - V_xx)/ V_zz
 ----------------------------------------------------------------------
    1       -         -         -             -         

The corresponding eigenvectors are printed atom-wise. Finally, the quadrupolar parameters are presented, which are commonly reported in NMR experiments.

            NMR quadrupolar parameters

  Cq : quadrupolar parameter    Cq=e*Q*V_zz/h
  eta: asymmetry parameters     (V_yy - V_xx)/ V_zz
  Q  : nuclear electric quadrupole moment in mb (millibarn)
 ----------------------------------------------------------------------
  ion       Cq(MHz)       eta       Q (mb)
 ----------------------------------------------------------------------
    1        -             -         -                      

Related tags and articles

QUAD_EFG

Examples that use this tag

References