Category:Semilocal functionals: Difference between revisions

From VASP Wiki
No edit summary
(Blanked the page)
Tag: Blanking
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
The local and semilocal [[exchange-correlation functionals]] depend locally on quantities like the electron density <math>n</math> or the kinetic-energy density <math>\tau</math>. Most of them can be classified into one of three main subcategories, listed below, depending on the variables on which <math>E_{\mathrm{xc}}</math> depends.


=== Local density approximation (LDA) ===
The LDA functionals are purely local in the sense that they depend solely on <math>n</math>:
:<math>
E_{\mathrm{xc}}^{\mathrm{LDA}}=\int\epsilon_{\mathrm{xc}}^{\mathrm{LDA}}(n)d^{3}r
</math>
with a corresponding exchange-correlation potential calculated as
:<math>
v_{\mathrm{xc}}^{\mathrm{LDA}} = \frac{\partial\epsilon_{\mathrm{xc}}^{\mathrm{LDA}}}{\partial n}
</math>
The most common LDA functionals, e.g,. {{TAG|GGA}}=CA {{cite|dirac:mpcps:1930}}{{cite|ceperley1980}}{{cite|perdewzunger1981}}, provide the (nearly) exact exchange-correlation energy for the homogeneous electron gas.
=== Generalized-gradient approximation (GGA) ===
In the GGA, there is an additional dependency on the gradient of <math>n</math>:
:<math>
E_{\mathrm{xc}}^{\mathrm{GGA}}=\int\epsilon_{\mathrm{xc}}^{\mathrm{GGA}}(n,\nabla n)d^{3}r
</math>
leading to an additional term in the potential compared to LDA:
:<math>
v_{\mathrm{xc}}^{\mathrm{GGA}} = \frac{\partial\epsilon_{\mathrm{xc}}^{\mathrm{GGA}}}{\partial n} -
\nabla\cdot\frac{\partial\epsilon_{\mathrm{xc}}^{\mathrm{GGA}}}{\partial\nabla n}
</math>
=== Meta-GGA ===
:<math>
E_{\mathrm{xc}}^{\mathrm{MGGA}}=\int\epsilon_{\mathrm{xc}}^{\mathrm{MGGA}}(n,\nabla n,\nabla^{2}n,\tau)d^{3}r,
</math>
leading to a non-multiplicative exchange-correlation potential:
:<math>
\hat{v}_{\mathrm{xc}}\psi_{i} =
\frac{\delta E_{\mathrm{xc}}^{\mathrm{MGGA}}}{\delta\psi_{i}^{*}}
=  \left(\frac{\partial\epsilon_{\mathrm{xc}}^{\mathrm{MGGA}}}{\partial n} -
\nabla\cdot\frac{\partial\epsilon_{\mathrm{xc}}^{\mathrm{MGGA}}}{\partial\nabla n}
\right)\psi_{i}
-\frac{1}{2}\nabla\cdot\left(\frac{\partial\epsilon_{\mathrm{xc}}^{\mathrm{MGGA}}}{\partial \tau}
\nabla\psi_{i}\right) .
</math>
: the functionals of the generalized-gradient approximation (GGA) and
  that, in addition to the electron density <math>n</math> and the gradient <math>\nabla n</math>, depend also on
* the kinetic-energy density <math>\tau</math>, and/or
* the Laplacian of the electron density <math>\nabla^{2}n</math>.
Thus, the exchange-correlation energy can be written as
:<math>
E_{\mathrm{xc}}^{\mathrm{MGGA}}=\int\epsilon_{\mathrm{xc}}^{\mathrm{MGGA}}(n,\nabla n,\nabla^{2}n,\tau)d^{3}r,
</math>
which leads to the exchange-correlation potential having the form
:<math>
\hat{v}_{\mathrm{xc}}\psi_{i} =
\frac{\delta E_{\mathrm{xc}}^{\mathrm{MGGA}}}{\delta\psi_{i}^{*}}
=  \left(\frac{\partial\epsilon_{\mathrm{xc}}^{\mathrm{MGGA}}}{\partial n} -
\nabla\cdot\frac{\partial\epsilon_{\mathrm{xc}}^{\mathrm{MGGA}}}{\partial\nabla n}
\right)\psi_{i}
-\frac{1}{2}\nabla\cdot\left(\frac{\partial\epsilon_{\mathrm{xc}}^{\mathrm{MGGA}}}{\partial \tau}
\nabla\psi_{i}\right) .
</math>
Although '''meta-GGAs''' are slightly more expensive than GGAs, they are still fast to evaluate and appropriate for very large systems. Furthermore, meta-GGAs can be more accurate than GGAs and more broadly applicable. Note that as in most other codes, '''meta-GGAs''' are implemented in VASP (see {{TAG|METAGGA}}) within the generalized KS scheme{{cite|yang:prb:2016|}}.
== How to ==
A '''meta-GGA functional''' can be used by specifying
* the {{TAG|METAGGA}} tag, or
* {{TAG|XC}} tag
in the {{FILE|INCAR}} file.
How to do a [[band-structure calculation using meta-GGA functionals]].
----
[[Category:VASP|PAW]][[Category:Exchange-correlation functionals]]

Latest revision as of 15:33, 27 February 2025

This category currently contains no pages or media.