Category:Exchange-correlation functionals: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
 
(51 intermediate revisions by 4 users not shown)
Line 1: Line 1:
In the KS formulation of DFT{{cite|hohenberg:pr:1964}}{{cite|kohn:pr:1965}}, the total energy is given by
In the Kohn-Sham (KS) formulation of density-functional theory (DFT){{cite|hohenberg:pr:1964}}{{cite|kohn:pr:1965}}, the total energy is given by
 
:<math>
:<math>
E_{\rm tot} = -\frac{1}{2}\sum_{i}\int\psi_{i}^{*}({\bf r})\nabla^{2}\psi_{i}({\bf r})d^{3}r - \sum_{A}\int\frac{Z_{A}}{\left\vert{\bf r}-{\bf R}_{A}\right\vert}n({\bf r})d^{3}r + \frac{1}{2}\int\int\frac{n({\bf r})n({\bf r'})}{\left\vert{\bf r}-{\bf r'}\right\vert}d^{3}rd^{3}r' + E_{\rm xc} + \frac{1}{2}\sum_{A\ne B}\frac{Z_{A}Z_{B}}{\left\vert{\bf R}_{A}-{\bf R}_{B}\right\vert}
E_{\rm tot}^{\rm KS-DFT} = -\frac{1}{2}\sum_{i}\int\psi_{i}^{*}({\bf r})\nabla^{2}\psi_{i}({\bf r})d^{3}r - \sum_{A}\int\frac{Z_{A}}{\left\vert{\bf r}-{\bf R}_{A}\right\vert}n({\bf r})d^{3}r + \frac{1}{2}\int\int\frac{n({\bf r})n({\bf r'})}{\left\vert{\bf r}-{\bf r'}\right\vert}d^{3}rd^{3}r' + E_{\rm xc} + \frac{1}{2}\sum_{A\ne B}\frac{Z_{A}Z_{B}}{\left\vert{\bf R}_{A}-{\bf R}_{B}\right\vert}
</math>
</math>
where the terms on the right-hand side represent the non-interacting kinetic energy of the electrons, the electrons-nuclei attraction energy, the classical Coulomb electron-electron repulsive energy, the exchange-correlation energy and the nuclei-nuclei repulsion energy, respectively. The orbitals <math>\psi_{i}</math> and the electron density <math>n=\sum_{i}\left\vert\psi_{i}\right\vert^{2}</math> that are used to evaluate <math>E_{\rm tot}</math> are obtained by solving self-consistently the KS equations
where the terms on the right-hand side represent the non-interacting kinetic energy of the electrons, the electrons-nuclei attraction energy, the classical Coulomb electron-electron repulsive energy, the exchange-correlation energy, and the nuclei-nuclei repulsion energy, respectively. The KS orbitals <math>\psi_{i}</math> and the electronic density <math>n=\sum_{i}\left\vert\psi_{i}\right\vert^{2}</math> that are used to evaluate <math>E_{\rm tot}^{\rm KS-DFT}</math> are obtained by [[:Category:Electronic minimization|solving self-consistently the KS equations]]
:<math>
:<math>
\left(-\frac{1}{2}\nabla^{2} -\sum_{A}\frac{Z_{A}}{\left\vert{\bf r}-{\bf R}_{A}\right\vert} + \int\frac{n({\bf r'})}{\left\vert{\bf r}-{\bf r'}\right\vert}d^{3}r' + v_{\rm xc}({\bf r})\right)\psi_{i}({\bf r}) = \epsilon_{i}\psi_{i}({\bf r})
\left(-\frac{1}{2}\nabla^{2} -\sum_{A}\frac{Z_{A}}{\left\vert{\bf r}-{\bf R}_{A}\right\vert} + \int\frac{n({\bf r'})}{\left\vert{\bf r}-{\bf r'}\right\vert}d^{3}r' + v_{\rm xc}({\bf r})\right)\psi_{i}({\bf r}) = \epsilon_{i}\psi_{i}({\bf r}).
</math>
</math>
The only terms in <math>E_{\rm tot}</math> and in the KS equations that are not known exactly are the exchange-correlation energy functional <math>E_{\rm xc}</math> and potential <math>v_{\rm xc}=\delta E_{\rm xc}/\delta n</math>. Therefore, the accuracy of the calculated properties depends mainly on the approximations used for <math>E_{\rm xc}</math> and <math>v_{\rm xc}</math>. Several hundreds of approximations for the exchange and correlation have been proposed{{cite|libxc_list}}. They can be classified into several types, like the local density approximation (LDA), generalized gradient approximation (GGA), meta-GGA, and hybrid. Functionals that include van der Waals corrections have also been proposed. More details on the different types of approximations available in VASP and how to use them can be found in the pages and subcategories listed below.
The only terms in <math>E_{\rm tot}^{\rm KS-DFT}</math> and in the KS equations that are not known exactly are the '''exchange-correlation energy functional''' <math>E_{\rm xc}</math> and potential <math>v_{\rm xc}=\delta E_{\rm xc}/\delta n</math>. Therefore, the accuracy of the calculated properties depends strongly on the approximations used for <math>E_{\rm xc}</math> and <math>v_{\rm xc}</math>.  
 
Several hundreds of approximations for the '''exchange and correlation''' have been proposed{{cite|libxc_list}}. They can be classified into families: the local density approximation (LDA), generalized gradient approximation (GGA), [[:Category:Meta-GGA|meta-GGA]], and [[:Category:Hybrid functionals|hybrid]]. There is also the possibility to include [[:Category:Van der Waals functionals|van der Waals corrections]] or an on-site Coulomb repulsion using [[:Category:DFT+U|DFT+U]] on top of another functional. More details on the different types of approximations available in VASP and how to use them can be found in the pages and subcategories listed below.


== How to ==
== How to ==
*LDA and GGA: {{TAG|GGA}}.
*Semilocal functionals:
*Meta-GGA: {{TAG|METAGGA}}.
**LDA and GGA: {{TAG|GGA}}
*Hybrids: {{TAG|LHFCALC}} and [[List_of_hybrid_functionals|list of hybrid functionals]].
**Meta-GGA: {{TAG|METAGGA}}
*DFT+U: {{TAG|LDAU}} and {{TAG|LDAUTYPE}}.
*Hybrids: {{TAG|LHFCALC}}, {{TAG|AEXX}}, {{TAG|HFSCREEN}} and [[List_of_hybrid_functionals|list of hybrid functionals]]
*Atom-pairwise van der Waals methods: (selected with the {{TAG|IVDW}} tag):
*DFT+U: {{TAG|LDAU}} and {{TAG|LDAUTYPE}}
**{{TAG|DFT-D2}}.
*Atom-pairwise and many-body methods for van der Waals interactions (selected with the {{TAG|IVDW}} tag):
**{{TAG|DFT-D3}}.
**Methods from Grimme et al.:
**{{TAG|DDsC dispersion correction}}.
***{{TAG|DFT-D2}}{{cite|grimme:jcc:06}}
**{{TAG|Many-body dispersion energy}}.
***{{TAG|DFT-D3}}{{cite|grimme:jcp:10}}{{cite|grimme:jcc:11}}
**{{TAG|Tkatchenko-Scheffler method}}.
***[[DFT-D4]]{{cite|caldeweyher:jcp:2019}} (available as of VASP.6.2 as [[Makefile.include#DFT-D4_.28optional.29|external package]])
**{{TAG|Tkatchenko-Scheffler method with iterative Hirshfeld partitioning}}.
**Methods from Tkatchenko, Scheffler et al.:
**{{TAG|Self-consistent screening in Tkatchenko-Scheffler method}}.
***{{TAG|Tkatchenko-Scheffler method}}{{cite|tkatchenko:prl:09}}
*Nonlocal van der Waals methods: (selected with the {{TAG|LUSE_VDW}} tag):
***{{TAG|Tkatchenko-Scheffler method with iterative Hirshfeld partitioning}}{{cite|bucko:jctc:13}}{{cite|bucko:jcp:14}}
**{{TAG|VdW-DF functional of Langreth and Lundqvist et al.}}
***{{TAG|Self-consistent screening in Tkatchenko-Scheffler method}}{{cite|tkatchenko:prl:12}}
***{{TAG|Many-body dispersion energy}}{{cite|tkatchenko:prl:12}}{{cite|ambrosetti:jcp:14}}
***{{TAG|Many-body_dispersion_energy_with_fractionally_ionic_model_for_polarizability}}{{cite|gould:jctc:2016_a}}{{cite|gould:jctc:2016_b}}
***[[LIBMBD_METHOD|Library libMBD of many-body dispersion methods]]{{cite|libmbd_1}}{{cite|libmbd_2}}{{cite|hermann:jcp:2023}}
**{{TAG|dDsC dispersion correction}}{{cite|steinmann:jcp:11}}{{cite|steinmann:jctc:11}}
**{{TAG|DFT-ulg}}{{cite|kim:jpcl:2012}}
*{{TAG|Nonlocal vdW-DF functionals}} for van der Waals interactions: {{TAG|LUSE_VDW}} and {{TAG|IVDW_NL}}


== References ==
== References ==

Latest revision as of 14:51, 1 July 2024

In the Kohn-Sham (KS) formulation of density-functional theory (DFT)[1][2], the total energy is given by

where the terms on the right-hand side represent the non-interacting kinetic energy of the electrons, the electrons-nuclei attraction energy, the classical Coulomb electron-electron repulsive energy, the exchange-correlation energy, and the nuclei-nuclei repulsion energy, respectively. The KS orbitals and the electronic density that are used to evaluate are obtained by solving self-consistently the KS equations

The only terms in and in the KS equations that are not known exactly are the exchange-correlation energy functional and potential . Therefore, the accuracy of the calculated properties depends strongly on the approximations used for and .

Several hundreds of approximations for the exchange and correlation have been proposed[3]. They can be classified into families: the local density approximation (LDA), generalized gradient approximation (GGA), meta-GGA, and hybrid. There is also the possibility to include van der Waals corrections or an on-site Coulomb repulsion using DFT+U on top of another functional. More details on the different types of approximations available in VASP and how to use them can be found in the pages and subcategories listed below.

How to

References

  1. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
  2. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
  3. https://libxc.gitlab.io/functionals/
  4. S. Grimme, J. Comput. Chem. 27, 1787 (2006).
  5. S. Grimme, J. Antony, S. Ehrlich, and S. Krieg, J. Chem. Phys. 132, 154104 (2010).
  6. S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem. 32, 1456 (2011).
  7. E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth, and S. Grimme, J. Chem. Phys. 150, 154122 (2019).
  8. A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).
  9. T. Bučko, S. Lebègue, J. Hafner, and J. G. Ángyán, J. Chem. Theory Comput. 9, 4293 (2013)
  10. T. Bučko, S. Lebègue, J. G. Ángyán, and J. Hafner, J. Chem. Phys. 141, 034114 (2014).
  11. a b A. Tkatchenko, R. A. DiStasio, Jr., R. Car, and M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012).
  12. A. Ambrosetti, A. M. Reilly, and R. A. DiStasio Jr., J. Chem. Phys. 140, 018A508 (2014).
  13. T. Gould and T. Bučko, C6 Coefficients and Dipole Polarizabilities for All Atoms and Many Ions in Rows 1–6 of the Periodic Table, J. Chem. Theory Comput. 12, 3603 (2016).
  14. T. Gould, S. Lebègue, J. G. Ángyán, and T. Bučko, A Fractionally Ionic Approach to Polarizability and van der Waals Many-Body Dispersion Calculations, J. Chem. Theory Comput. 12, 5920 (2016).
  15. https://libmbd.github.io/
  16. https://github.com/libmbd/libmbd
  17. J. Hermann, M. Stöhr, S. Góger, S. Chaudhuri, B. Aradi, R. J. Maurer, and A. Tkatchenko, libMBD: A general-purpose package for scalable quantum many-body dispersion calculations, J. Chem. Phys. 159, 174802 (2023).
  18. S. N. Steinmann and C. Corminboeuf, J. Chem. Phys. 134, 044117 (2011).
  19. S. N. Steinmann and C. Corminboeuf, J. Chem. Theory Comput. 7, 3567 (2011).
  20. H. Kim, J.-M. Choi, and W. A. Goddard, III, J. Phys. Chem. Lett. 3, 360 (2012).

Subcategories

This category has the following 5 subcategories, out of 5 total.

Pages in category "Exchange-correlation functionals"

The following 120 pages are in this category, out of 120 total.