Category:Exchange-correlation functionals: Difference between revisions

From VASP Wiki
No edit summary
No edit summary
 
(124 intermediate revisions by 5 users not shown)
Line 1: Line 1:
In the Kohn-Sham (KS) formulation of density functional theory (DFT){{cite|hohenberg:pr:1964}}{{cite|kohn:pr:1965}}, the total energy is given by
In the Kohn-Sham (KS) formulation of density-functional theory (DFT){{cite|hohenberg:pr:1964}}{{cite|kohn:pr:1965}}, the total energy is given by
 
:<math>
E_{\rm tot}^{\rm KS}[\rho] = -\frac{1}{2}\sum_{i=1}^{N}\int
\psi_{i}^{*}({\bf r})\nabla^{2}\psi_{i}({\bf r})d^{3}r + \int v_{\rm ext}({\bf r})\rho({\bf r})d^{3}r + E_{\rm xc} + \frac{1}{2}\int\int\frac{\rho({\bf r})\rho({\bf r'})}{\left\vert{\bf r}-{\bf r'}\right\vert}d^{3}rd^{3}r' + \frac{1}{2}\sum_{A\ne B}\frac{Z_{A}Z_{B}}{\left\vert{\bf R}_{A}-{\bf R}_{B}\right\vert}
 
where
:<math>
T_{\rm s}[\{\psi_{i}\}]=-\frac{1}{2}\sum_{i=1}^{N}\int
\psi_{i}^{*}({\bf r})\nabla^{2}\psi_{i}({\bf r})d^{3}r
</math>
is the non-interacting kinetic energy of the electrons,
:<math>
U_{\rm H}[\rho] = \int v_{\rm ext}({\bf r})\rho({\bf r})d^{3}r
</math>
is the Classical Coulomb Hartree term,
:<math>
:<math>
V_{\rm en}[\rho] =
E_{\rm tot}^{\rm KS-DFT} = -\frac{1}{2}\sum_{i}\int\psi_{i}^{*}({\bf r})\nabla^{2}\psi_{i}({\bf r})d^{3}r - \sum_{A}\int\frac{Z_{A}}{\left\vert{\bf r}-{\bf R}_{A}\right\vert}n({\bf r})d^{3}r + \frac{1}{2}\int\int\frac{n({\bf r})n({\bf r'})}{\left\vert{\bf r}-{\bf r'}\right\vert}d^{3}rd^{3}r' + E_{\rm xc} + \frac{1}{2}\sum_{A\ne B}\frac{Z_{A}Z_{B}}{\left\vert{\bf R}_{A}-{\bf R}_{B}\right\vert}
\frac{1}{2}\int\int\frac{\rho({\bf r})\rho({\bf r'})}
{\left\vert{\bf r}-{\bf r'}\right\vert}d^{3}rd^{3}r',
</math>
</math>
is the electrons-nuclei attraction energy and
where the terms on the right-hand side represent the non-interacting kinetic energy of the electrons, the electrons-nuclei attraction energy, the classical Coulomb electron-electron repulsive energy, the exchange-correlation energy, and the nuclei-nuclei repulsion energy, respectively. The KS orbitals <math>\psi_{i}</math> and the electronic density <math>n=\sum_{i}\left\vert\psi_{i}\right\vert^{2}</math> that are used to evaluate <math>E_{\rm tot}^{\rm KS-DFT}</math> are obtained by [[:Category:Electronic minimization|solving self-consistently the KS equations]]
:<math>
:<math>
V_{\rm nn} = \frac{1}{2}\sum_{A\ne B}
\left(-\frac{1}{2}\nabla^{2} -\sum_{A}\frac{Z_{A}}{\left\vert{\bf r}-{\bf R}_{A}\right\vert} + \int\frac{n({\bf r'})}{\left\vert{\bf r}-{\bf r'}\right\vert}d^{3}r' + v_{\rm xc}({\bf r})\right)\psi_{i}({\bf r}) = \epsilon_{i}\psi_{i}({\bf r}).
\frac{Z_{A}Z_{B}}{\left\vert{\bf R}_{A}-{\bf R}_{B}\right\vert}
</math>
</math>
is the nuclei-nuclei repulsion energy.
The only terms in <math>E_{\rm tot}^{\rm KS-DFT}</math> and in the KS equations that are not known exactly are the '''exchange-correlation energy functional''' <math>E_{\rm xc}</math> and potential <math>v_{\rm xc}=\delta E_{\rm xc}/\delta n</math>. Therefore, the accuracy of the calculated properties depends strongly on the approximations used for <math>E_{\rm xc}</math> and <math>v_{\rm xc}</math>.  


== Theoretical Background ==
Several hundreds of approximations for the '''exchange and correlation''' have been proposed{{cite|libxc_list}}. They can be classified into families: the local density approximation (LDA), generalized gradient approximation (GGA), [[:Category:Meta-GGA|meta-GGA]], and [[:Category:Hybrid functionals|hybrid]]. There is also the possibility to include [[:Category:Van der Waals functionals|van der Waals corrections]] or an on-site Coulomb repulsion using [[:Category:DFT+U|DFT+U]] on top of another functional. More details on the different types of approximations available in VASP and how to use them can be found in the pages and subcategories listed below.
*Hybrid functionals: {{TAG|Hartree-Fock and HF/DFT hybrid functionals}}.
*L(S)DA (on-site interactions): {{TAG|LDAUTYPE}}.
*van der Waals:
**{{TAG|DFT-D2}} method.
**{{TAG|DFT-D3}} method.
**{{TAG|DDsC dispersion correction}}.
**{{TAG|Many-body dispersion energy}}.
**{{TAG|Tkatchenko-Scheffler method}}.
**{{TAG|Tkatchenko-Scheffler method with iterative Hirshfeld partitioning}}.
**{{TAG|Self-consistent screening in Tkatchenko-Scheffler method}}.
**{{TAG|VdW-DF functional of Langreth and Lundqvist et al.}}


== How to ==
== How to ==
*Hybrid functionals: {{TAG|Specific hybrid functionals}}.
*Semilocal functionals:
*Meta GGA's: {{TAG|METAGGA}}.
**LDA and GGA: {{TAG|GGA}}
*L(S)DA (on-site interactions): {{TAG|LDAUTYPE}}.
**Meta-GGA: {{TAG|METAGGA}}
*van der Waals:
*Hybrids: {{TAG|LHFCALC}}, {{TAG|AEXX}}, {{TAG|HFSCREEN}} and [[List_of_hybrid_functionals|list of hybrid functionals]]
**Main tag for van der Waals algorithm: {{TAG|IVDW}}
*DFT+U: {{TAG|LDAU}} and {{TAG|LDAUTYPE}}
**{{TAG|DFT-D2}} method.
*Atom-pairwise and many-body methods for van der Waals interactions (selected with the {{TAG|IVDW}} tag):
**{{TAG|DFT-D3}} method.
**Methods from Grimme et al.:
**{{TAG|DDsC dispersion correction}}.
***{{TAG|DFT-D2}}{{cite|grimme:jcc:06}}
**{{TAG|Many-body dispersion energy}}.
***{{TAG|DFT-D3}}{{cite|grimme:jcp:10}}{{cite|grimme:jcc:11}}
**{{TAG|Tkatchenko-Scheffler method}}.
***[[DFT-D4]]{{cite|caldeweyher:jcp:2019}} (available as of VASP.6.2 as [[Makefile.include#DFT-D4_.28optional.29|external package]])
**{{TAG|Tkatchenko-Scheffler method with iterative Hirshfeld partitioning}}.
**Methods from Tkatchenko, Scheffler et al.:
**{{TAG|Self-consistent screening in Tkatchenko-Scheffler method}}.
***{{TAG|Tkatchenko-Scheffler method}}{{cite|tkatchenko:prl:09}}
**{{TAG|VdW-DF functional of Langreth and Lundqvist et al.}}
***{{TAG|Tkatchenko-Scheffler method with iterative Hirshfeld partitioning}}{{cite|bucko:jctc:13}}{{cite|bucko:jcp:14}}
----
***{{TAG|Self-consistent screening in Tkatchenko-Scheffler method}}{{cite|tkatchenko:prl:12}}
***{{TAG|Many-body dispersion energy}}{{cite|tkatchenko:prl:12}}{{cite|ambrosetti:jcp:14}}
***{{TAG|Many-body_dispersion_energy_with_fractionally_ionic_model_for_polarizability}}{{cite|gould:jctc:2016_a}}{{cite|gould:jctc:2016_b}}
***[[LIBMBD_METHOD|Library libMBD of many-body dispersion methods]]{{cite|libmbd_1}}{{cite|libmbd_2}}{{cite|hermann:jcp:2023}}
**{{TAG|dDsC dispersion correction}}{{cite|steinmann:jcp:11}}{{cite|steinmann:jctc:11}}
**{{TAG|DFT-ulg}}{{cite|kim:jpcl:2012}}
*{{TAG|Nonlocal vdW-DF functionals}} for van der Waals interactions: {{TAG|LUSE_VDW}} and {{TAG|IVDW_NL}}
 
== References ==
<references/>


[[Category:VASP|XC Functionals]]
[[Category:VASP|Exchange-correlation functionals]]

Latest revision as of 14:51, 1 July 2024

In the Kohn-Sham (KS) formulation of density-functional theory (DFT)[1][2], the total energy is given by

where the terms on the right-hand side represent the non-interacting kinetic energy of the electrons, the electrons-nuclei attraction energy, the classical Coulomb electron-electron repulsive energy, the exchange-correlation energy, and the nuclei-nuclei repulsion energy, respectively. The KS orbitals and the electronic density that are used to evaluate are obtained by solving self-consistently the KS equations

The only terms in and in the KS equations that are not known exactly are the exchange-correlation energy functional and potential . Therefore, the accuracy of the calculated properties depends strongly on the approximations used for and .

Several hundreds of approximations for the exchange and correlation have been proposed[3]. They can be classified into families: the local density approximation (LDA), generalized gradient approximation (GGA), meta-GGA, and hybrid. There is also the possibility to include van der Waals corrections or an on-site Coulomb repulsion using DFT+U on top of another functional. More details on the different types of approximations available in VASP and how to use them can be found in the pages and subcategories listed below.

How to

References

  1. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
  2. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
  3. https://libxc.gitlab.io/functionals/
  4. S. Grimme, J. Comput. Chem. 27, 1787 (2006).
  5. S. Grimme, J. Antony, S. Ehrlich, and S. Krieg, J. Chem. Phys. 132, 154104 (2010).
  6. S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem. 32, 1456 (2011).
  7. E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth, and S. Grimme, J. Chem. Phys. 150, 154122 (2019).
  8. A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).
  9. T. Bučko, S. Lebègue, J. Hafner, and J. G. Ángyán, J. Chem. Theory Comput. 9, 4293 (2013)
  10. T. Bučko, S. Lebègue, J. G. Ángyán, and J. Hafner, J. Chem. Phys. 141, 034114 (2014).
  11. a b A. Tkatchenko, R. A. DiStasio, Jr., R. Car, and M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012).
  12. A. Ambrosetti, A. M. Reilly, and R. A. DiStasio Jr., J. Chem. Phys. 140, 018A508 (2014).
  13. T. Gould and T. Bučko, C6 Coefficients and Dipole Polarizabilities for All Atoms and Many Ions in Rows 1–6 of the Periodic Table, J. Chem. Theory Comput. 12, 3603 (2016).
  14. T. Gould, S. Lebègue, J. G. Ángyán, and T. Bučko, A Fractionally Ionic Approach to Polarizability and van der Waals Many-Body Dispersion Calculations, J. Chem. Theory Comput. 12, 5920 (2016).
  15. https://libmbd.github.io/
  16. https://github.com/libmbd/libmbd
  17. J. Hermann, M. Stöhr, S. Góger, S. Chaudhuri, B. Aradi, R. J. Maurer, and A. Tkatchenko, libMBD: A general-purpose package for scalable quantum many-body dispersion calculations, J. Chem. Phys. 159, 174802 (2023).
  18. S. N. Steinmann and C. Corminboeuf, J. Chem. Phys. 134, 044117 (2011).
  19. S. N. Steinmann and C. Corminboeuf, J. Chem. Theory Comput. 7, 3567 (2011).
  20. H. Kim, J.-M. Choi, and W. A. Goddard, III, J. Phys. Chem. Lett. 3, 360 (2012).

Subcategories

This category has the following 5 subcategories, out of 5 total.

Pages in category "Exchange-correlation functionals"

The following 120 pages are in this category, out of 120 total.