Interface pinning calculations: Difference between revisions

From VASP Wiki
No edit summary
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
Interface Pinning is a method for finding melting points from an MD simulation of a system where the liquid and the solid phase are in contact. To prevent melting or freezing at constant pressure and constant temperature, a bias potential applies a penalty energy for deviations from the desired two phase system.
'''Interface pinning''' uses the <math>Np_zT</math> ensemble where the barostat only acts along the <math>z</math> direction.
This ensemble uses a Langevin thermostat and a Parrinello-Rahman barostat with lattice constraints in the remaining two dimensions.
The solid-liquid interface must be in the <math>x</math>-<math>y</math> plane perpendicular to the action of the barostat.


The Steinhardt-Nelson <math>Q_6</math> order parameter is used for discriminating the solid from the liquid phase and the bias potential is given by
Set the following tags for the '''interface pinning''' method:
;{{TAG|OFIELD_Q6_NEAR}}: Defines the near-fading distance <math>n</math>.
;{{TAG|OFIELD_Q6_FAR}}: Defines the far-fading distance <math>f</math>.
;{{TAG|OFIELD_KAPPA}}: Defines the coupling strength <math>\kappa</math> of the bias potential.
;{{TAG|OFIELD_A}}: Defines the desired value of the order parameter <math>A</math>.


<math>U_\textrm{bias}(\mathbf{R}) = \frac\kappa2 \left(Q_6(\mathbf{R}) - a\right)^2 </math>
The following example {{TAG|INCAR}} file calculates the interface pinning in sodium{{cite|pedersen:prb:13}}:
 
where <math>Q_6({\mathbf{R}})</math> is the Steinhardt-Nelson <math>Q_6</math> orientational order parameter for the current configuration <math>\mathbf{R}</math> and <math>a</math> is the desired value of the order parameter close to the order parameter of the initial two phase configuration.
 
With the bias potential enabled, the system can equilibrate while staying in the two phase configuration. From the difference of the average order parameter <math>\langle Q_6 \rangle</math> in equilibrium and the desired order
parameter <math>a</math> one can directly compute the difference of the chemical potential of the solid and the liquid phase:
 
<math> N(\mu_\textrm{solid} - \mu_\textrm{liquid}) =\kappa (Q_{6 \textrm{solid}} - Q_{6 \textrm{liquid}}) (\langle Q_6 \rangle - a) </math>
 
where <math>N</math> is the number of atoms in the simulation.
 
It is preferable to simulate in the super heated regime, as it is easier for the bias potential to prevent a system from melting than to prevent a system from freezing.
 
<math>Q_6(\mathbf{R})</math> needs to be continuous for computing the forces on the atoms originating from the bias potential. We use a smooth fading function <math>w(r)</math> to weight each pair of atoms at distance <math>r</math> for the calculation of the <math>Q_6</math> order parameter:
 
<math> w(r) = \left\{ \begin{array}{cl} 1  &\textrm{for} \,\, r\leq n \\
                      \frac{(f^2 - r^2)^2 (f^2 - 3n^2 + 2r^2)}{(f^2 - n^2)^3}  &\textrm{for} \,\, n<r<f \\
                      0  &\textrm{for} \,\,f\leq r \end{array}\right. </math>
 
where <math>n</math> and <math>f</math> are the near and far fading distances given in the {{TAG|INCAR}} file respectively. A good choice for the fading range can be made from the radial distribution function <math>g(r)</math> of the crystal phase. We recommend to use the distance where <math>g(r)</math> goes below 1 after the first peak as the near fading distance <math>n</math> and the distance where <math>g(r)</math> goes above 1 again before the second peak as the far fading distance <math>f</math>. <math>g(r)</math> should be low where the fading function has a high derivative to prevent spurious stress.
 
The interface pinning method uses the <math>Np_zT</math> ensemble where the barostat only acts on the direction of the lattice that is perpendicular to the solid liquid interface. We recommend to use a Langevin thermostat and a Parrinello-Rahman barostat with lattice constraints as demonstrated in the listing below assuming a solid liquid interface perpendicular to the <math>z</math> direction.
The listing shows the section of the {{TAG|INCAR}} file relevant for interface pinning that was used to determine the triple point of sodium:
  {{TAGBL|TEBEG}} = 400                  # temperature in K
  {{TAGBL|TEBEG}} = 400                  # temperature in K
  {{TAGBL|POTIM}} = 4                    # timestep in fs
  {{TAGBL|POTIM}} = 4                    # timestep in fs
  {{TAGBL|IBRION}} = 0                    # do MD
  {{TAGBL|IBRION}} = 0                    # run molecular dynamics
  {{TAGBL|ISIF}} = 3                      # use Parrinello-Rahman barostat for the lattice
  {{TAGBL|ISIF}} = 3                      # use Parrinello-Rahman barostat for the lattice
  {{TAGBL|MDALGO}} = 3                    # use Langevin thermostat
  {{TAGBL|MDALGO}} = 3                    # use Langevin thermostat
  {{TAGBL|LANGEVIN_GAMMA}} = 1.0         # friction coef. for atomic DoFs for each species
  {{TAGBL|LANGEVIN_GAMMA_L}} = 3.0       # friction coefficient for the lattice degree of freedoms (DoF)
  {{TAGBL|LANGEVIN_GAMMA_L}} = 3.0       # friction coef. for the lattice DoFs
  {{TAGBL|LANGEVIN_GAMMA}} = 1.0         # friction coefficient for atomic DoFs for each species
  {{TAGBL|PMASS}} = 100                  # mass for lattice DoFs
  {{TAGBL|PMASS}} = 100                  # mass for lattice DoFs
  {{TAGBL|LATTICE_CONSTRAINTS}} = F F T  # fix x&y, release z lattice dynamics
  {{TAGBL|LATTICE_CONSTRAINTS}} = F F T  # fix x-y plane, release z lattice dynamics
  {{TAGBL|OFIELD_Q6_NEAR}} = 3.22        # fading distances for computing a continuous Q6
  {{TAGBL|OFIELD_Q6_NEAR}} = 3.22        # near fading distance for function w(r) in Angstrom
  {{TAGBL|OFIELD_Q6_FAR}} = 4.384        # in A
  {{TAGBL|OFIELD_Q6_FAR}} = 4.384        # far fading distance for function w(r) in Angstrom
  {{TAGBL|OFIELD_KAPPA}} = 500            # strength of bias potential in eV/(unit of Q)^2
  {{TAGBL|OFIELD_KAPPA}} = 500            # strength of bias potential in eV/(unit of Q)^2
  {{TAGBL|OFIELD_A}} = 0.15              # desired value of the Q6 order parameter
  {{TAGBL|OFIELD_A}} = 0.15              # desired value of the Q6 order parameter
%TODO: ref
For more details on the interface pinning method see reference <ref name="pedersen2013"/>.


== Related Tags and Sections ==
== References ==
{{TAG|OFIELD_A}},{{TAG|OFIELD_KAPPA}},{{TAG|OFIELD_Q6_FAR}},{{TAG|OFIELD_Q6_NEAR}},{{TAG|LATTICE_CONSTRAINTS}}
<references/>


{{sc|Interface pinning|Examples|Examples that use this tag}}
<noinclude>


== References ==
<references>
<ref name="pedersen2013">[http://journals.aps.org/prb/abstract/10.1103/PhysRevB.88.094101 U. R. Pedersen, F. Hummel, G. Kresse, G. Kahl, and C. Dellago, Phys. Rev. B 88, 094101 (2013).]</ref>
</references>
----
----
[[The_VASP_Manual|Contents]]


[[Category:Molecular Dynamics|Molecular Dynamics]][[Category:Interface_pinning]]
[[Category:Advanced molecular-dynamics sampling]][[Category:Howto]]

Latest revision as of 11:58, 16 October 2024

Interface pinning uses the ensemble where the barostat only acts along the direction. This ensemble uses a Langevin thermostat and a Parrinello-Rahman barostat with lattice constraints in the remaining two dimensions. The solid-liquid interface must be in the - plane perpendicular to the action of the barostat.

Set the following tags for the interface pinning method:

OFIELD_Q6_NEAR
Defines the near-fading distance .
OFIELD_Q6_FAR
Defines the far-fading distance .
OFIELD_KAPPA
Defines the coupling strength of the bias potential.
OFIELD_A
Defines the desired value of the order parameter .

The following example INCAR file calculates the interface pinning in sodium[1]:

TEBEG = 400                   # temperature in K
POTIM = 4                     # timestep in fs
IBRION = 0                    # run molecular dynamics
ISIF = 3                      # use Parrinello-Rahman barostat for the lattice
MDALGO = 3                    # use Langevin thermostat
LANGEVIN_GAMMA_L = 3.0        # friction coefficient for the lattice degree of freedoms (DoF)
LANGEVIN_GAMMA = 1.0          # friction coefficient for atomic DoFs for each species
PMASS = 100                   # mass for lattice DoFs
LATTICE_CONSTRAINTS = F F T   # fix x-y plane, release z lattice dynamics
OFIELD_Q6_NEAR = 3.22         # near fading distance for function w(r) in Angstrom
OFIELD_Q6_FAR = 4.384         # far fading distance for function w(r) in Angstrom
OFIELD_KAPPA = 500            # strength of bias potential in eV/(unit of Q)^2
OFIELD_A = 0.15               # desired value of the Q6 order parameter

References