Improved dimer method: Difference between revisions

From VASP Wiki
(Created page with "The dimer method<ref name="henkelman1999"/> is a technique for the optimization of transition states. In VASP, the method improved by Heyden et al.~\cite{Heyden:05} (IDM) is i...")
 
No edit summary
 
(21 intermediate revisions by 4 users not shown)
Line 1: Line 1:
The dimer method<ref name="henkelman1999"/> is a technique for the optimization of transition states.
The dimer method{{Cite|henkelman:jpc:1999}} is a technique for the optimization of transition states. In VASP, the improved dimer method (IDM) by Heyden et al. is implemented, and a detailed presentation of the method can be found in their paper{{Cite|heyden:jpc:2005}}. The algorithm for IDM consists of the following cyclically repeated steps:
In VASP, the method improved by Heyden et al.~\cite{Heyden:05} (IDM) is implemented,
*The curvature along the dimer axis is computed using finite differences. The initial dimer direction must be provided (see below).
detailed presentation of the method can be found in Ref. ~\cite{Heyden:05}.
*The dimer is rotated such that its axis is parallel with the direction of the maximal negative curvature.
Algorithm for IDM consists of the following cyclically repeated steps:
*An optimization step is taken, and the potential energy is maximized along the unstable direction, (i.e., dimer axis) while it is minimized in all other directions.
\begin{itemize}
\item
curvature along the dimer axis is computed using finite diferences.
The initial dimer direction must be provided by user (see below).
\item
dimer is rotated such as its axis is parallel with the direction
of the maximal negative curvature
\item
optimization step is taken, potential energy is maximized along
the unstable direction (i.e. dimer axis) while it is minimized in
all other directions
\end{itemize}


The method is invoked by setting {\tt IBRION}=44 (see Sec.~\ref{sec:IBRION}).\index{INCAR!I!IBRION|textit}
The method is invoked by setting {{TAG|IBRION}}=44 in the {{TAG|INCAR}} file.
%(Martijn, please add a note about the dimer method in the section describing IBRION parameter).


Furthermore, user must specify direction of the unstable mode. Corresponding 3N dimensional vector
Furthermore, the user must specify the direction of the unstable mode. The corresponding <math>3N</math> dimensional vector is defined in the {{FILE|POSCAR}} file after the lines with atomic coordinates and a separating blank line. Note that the dimer direction is automatically normalized, i.e., the norm of the dimer axis is irrelevant. An example of a {{FILE|POSCAR}} file for a simulation with the dimer method is given in the following:
is defined in the POSCAR file after the lines with atomic coordinates and a separating blank line.
Note that the dimer direction is automatically normalized, i.e. the norm of the dimer axis defined by user is irrelevant. Example of POSCAR file for simulation with dimer method:


\begin{verbatim}
ammonia flipping
ammonia flipping
1.
1.
6. 0. 0.
6. 0. 0.
0. 7. 0.
0. 7. 0.
0. 0. 8.
0. 0. 8.
H N
H N
3 1
3 1
cart
cart
        -0.872954        0.000000      -0.504000        ! coordinates for atom 1
      -0.872954        0.000000      -0.504000        ! coordinates for atom 1
        0.000000        0.000000        1.008000
        0.000000        0.000000        1.008000
        0.872954        0.000000      -0.504000
        0.872954        0.000000      -0.504000
        0.000000        0.000000        0.000000        ! coordinates for atom N
        0.000000        0.000000        0.000000        ! coordinates for atom N
        ! here we define trial unstable direction:
      ! here we define trial unstable direction:
        0.000001    0.522103  -0.000009        ! components for atom 1
        0.000001    0.522103  -0.000009        ! components for atom 1
        -0.000006    0.530068    0.000000
      -0.000006    0.530068    0.000000
        -0.000005    0.522067  -0.000007
      -0.000005    0.522067  -0.000007
        0.000001  -0.111442    0.000001        ! components for atom N
        0.000001  -0.111442    0.000001        ! components for atom N
\end{verbatim}


As in the other structural optimization algorithms in VASP, convergence is controlled through the {{TAG|EDIFFG}} tag.


Experienced users can affect the performance of the dimer method by modifying the numerical values of the following parameters (the given example values are the default values):
*{{TAG|FINDIFF}}=1 Use a forward ({{TAG|FINDIFF}}=1) or central ({{TAG|FINDIFF}}=2) difference formula for the numerical differentiation to compute the curvature along the dimer direction
*{{TAG|DIMER_DIST}}=0.01  The step size for a numerical differentiation (in <math>\AA</math>)
*{{TAG|MINROT}}=0.01 Dimer is rotated only if the predicted rotation angle is greater than {{TAG|MINROT}} (rad.)
*{{TAG|STEP_SIZE}}=0.01 Trial step size for optimization step (in <math>\AA</math>)
*{{TAG|STEP_MAX}}=0.1 Trust radius (upper limit) for the optimization step (in <math>\AA</math>)


As in the other structural optimization algorithms in VASP, convergence is controlled through
Important information about the progress of optimization is written in the {{FILE|OUTCAR}} file after the expression ''DIMER METHOD''.
the {\tt EDIFFG} tag.


Experienced users can affect the performance of the dimer method
In particular, it is useful to check the curvature along the dimer direction, which should be a negative number (a long sequence of positive numbers usually indicates that the algorithm fails to converge to the correct transition state).
by modifying the numerical values of the following parameters:
{{NB|mind| The current implementation does not support lattice optimizations ({{TAG|ISIF}}>2) and can be used only for the relaxation of atomic positions.}}


\begin{itemize}
== Initial dimer axis ==
\item
{\tt FINDIFF}= 1 $|$ 2 \\
Use a forward (1) or central (2) difference formula for the numerical differentiation
to compute the curvature along the dimer direction\\


Default:
The direction of an unstable vibrational mode can be obtained by performing the vibrational analysis ({{TAG|IBRION}}=5) and taking the x-, y-, and z- components of the imaginary vibrational mode (after division by <math>\sqrt{m}</math>!) parallel with the reaction coordinate. Note that in order to plot "Eigenvectors after division by SQRT(mass)", {{TAG|NWRITE}}=3 should be used.
{\tt FINDIFF}=1


\item
== Practical example ==
{\tt DIMER\_DIST}=[real]  the step size for a numerical differentiation ({\AA})\\


Default:
In this example, the transition state for the ammonia flipping is computed. All calculations discussed here were performed using the PBE functional, Brillouin zone sampling was restricted to the gamma point. This practical example can be completed in a few seconds on a standard desktop PC. The starting structure for the IDM simulation should be a reasonable guess for the transition state. A {{FILE|POSCAR}} file with the initial guess for the ammonia flipping looks like this:
{\tt DIMER\_DIST}=0.01


\item
ammonia flipping
{\tt MINROT}=[real] dimer is rotated only if the predicted rotation angle is greater than MINROT (rad.)\\
1.
6. 0. 0.
0. 7. 0.
0. 0. 8.
H N
3 1
cart
        -0.872954        0.000000      -0.504000
        0.000000        0.000000        1.008000
        0.872954        0.000000      -0.504000
        0.000000        0.000000        0.000000
   
As an input for the dimer method, the direction of the unstable mode (dimer axis) is needed. This can be obtained by performing vibrational analysis. The {{FILE|INCAR}} file should contain the following lines:


Default:
{{TAGBL|NSW}} = 1
{\tt MINROT}=0.01
{{TAGBL|Prec}} = Normal
{{TAGBL|IBRION}} = 5                ! perform vibrational analysis
{{TAGBL|NFREE}} = 2                  ! select central differences algorithm
{{TAGBL|POTIM}} = 0.02              ! step for the numerical differenciation
{{TAGBL|NWRITE}} = 3                ! write down eigenvectors of dynamical matrix after division by SQRT(mass)


\item
After completing the vibrational analysis, we look up the hardest imaginary mode (Eigenvectors after division by SQRT(mass)!) in the {{FILE|OUTCAR}} file:
{\tt STEP\_SIZE}=[real]  trial step size for optimization step ({\AA})\\


Default:
  12 f/i=  23.224372 THz  145.923033 2PiTHz  774.681641 cm-1    96.048317 meV
{\tt STEP\_SIZE}=0.01
              X        Y        Z          dx          dy          dz
      5.127046  0.000000  7.496000    0.000001    0.522103  -0.000009
      0.000000  0.000000  1.008000    -0.000006    0.530068    0.000000
      0.872954  0.000000  7.496000    -0.000005    0.522067  -0.000007
      0.000000  0.000000  0.000000    0.000001  -0.111442    0.000001


\item
and use the last three columns to define the dimer axis in the {{FILE|POSCAR}} file:
{\tt STEP\_MAX}=[real]  trust radius (upper limit) the optimization step ({\AA})\\


Default:
ammonia flipping
{\tt STEP\_MAX}=0.1
1.
\end{itemize}
6. 0. 0.
0. 7. 0.
0. 0. 8.
H N
3 1
cart
        -0.872954        0.000000      -0.504000        ! coordinates for atom 1
        0.000000        0.000000        1.008000
        0.872954        0.000000      -0.504000
        0.000000        0.000000        0.000000        ! coordinates for atom N
        ! here we define trial unstable direction:
        0.000001    0.522103  -0.000009        ! components for atom 1
        -0.000006    0.530068    0.000000
        -0.000005    0.522067  -0.000007
        0.000001  -0.111442    0.000001        ! components for atom N


Important information about the progress of optimization is written
In order to perform IDM calculation, the {{FILE|INCAR}} file should contain the following lines:
in the file OUTCAR after the expression 'DIMER METHOD'.


In particular, it is useful to check the curvature along the dimer direction,
{{TAGBL|NSW}} = 100         
which should be a negative number (long sequence of positive numbers usually indicates
{{TAGBL|Prec}}=Normal
that the algorithm fails to converge to the correct transition state).\\
{{TAGBL|IBRION}}=44          !  use the dimer method as optimization engine
{{TAGBL|EDIFFG}}=-0.03


IMPORTANT NOTE: The current implementation does not support lattice optimizations ({\tt ISIF}$>$2)\index{INCAR!I!ISIF|textit} and can be used only for the relaxation of atomic positions.
With this setting, the algorithm converges in just a few relaxation steps. Further vibrational analysis can be performed to prove that the relaxed structure is indeed a first-order saddle point (one imaginary frequency).


\subsubsection{Initial dimer axis}\label{hint}
{{NB|mind|
The direction of unstable vibrational mode can be obtained
If you perform a frequency calculation on this optimized structure, take care to consider the translational modes that are present. These will appear as small imaginary frequencies, less than 5 cm-1 in the OUTCAR file and may be recognized by the "dx" terms for each atom being large, while the remaining "dy" and "dz" terms are near zero (for x  translation). This will result in multiple imaginary frequencies. The goal is to have one "large" imaginary frequency, and then these small translational modes should be set to zero for calculating thermodynamic properties.
by performing vibrational analysis ({\tt IBRION}=5, see Sec.~\ref{sec:IBRION=5and6}) and taking
}}
the x-, y-, and z- components of the imaginary vibrational mode (after division by SQRT(mass)!) parallel with the reaction coordinate. Note that in order to plot  "Eigenvectors after division by SQRT(mass)", {\tt NWRITE}=3\index{INCAR!N!NWRITE|textit} should be used.


\subsubsection{Practical example}\label{example}
For example, the x-translation is shown below:
In this example, transition state for the ammonia flipping is computed.
All calculations discussed here were performed using the PBE functional,
Brillouin zone sampling was restricted to the gamma point.
This practical example can be completed in a few seconds on a standard desktop PC.
The starting structure for IDM simulation should be a reasonable guess for the transition state.
POSCAR with the initial guess for the ammonia flipping:


\begin{verbatim}
  11 f/i=    0.092375 THz    0.580407 2PiTHz    3.081284 cm-1     0.382030 meV
ammonia flipping
            X        Y        Z          '''dx'''          dy          dz
1.
      5.127046  0.000000  7.496000    '''-0.247337'''    0.000339    0.008273
6. 0. 0.
      0.000000  0.000000  1.008000    '''-0.232726'''    0.000336  -0.000038
0. 7. 0.
      0.872954  0.000000 7.496000    '''-0.247322'''    0.000340  -0.008357
0. 0. 8.
      0.000000 0.000000 0.000000   '''-0.242501'''    0.000341  -0.000041
H N
3 1
cart
      -0.872954        0.000000      -0.504000
        0.000000        0.000000       1.008000
        0.872954        0.000000      -0.504000
        0.000000       0.000000       0.000000
\end{verbatim}


As an input for the dimer method, direction of unstable mode (dimer axis) is needed. This can be obtained
== Related tags and articles ==
by performing vibrational analysis. The INCAR file should contain the following lines:
{{TAG|FINDIFF}}, {{TAG|DIMER_DIST}}, {{TAG|MINROT}}, {{TAG|STEP_SIZE}}, {{TAG|STEP_MAX}}
 
\begin{verbatim}
NSW = 1
Prec=Normal
IBRION=5                ! perform vibrational analysis
NFREE=2                  ! select central differences algorithm
POTIM=0.02              ! step for the numerical differenciation
NWRITE=3                ! write down eigenvectors of dynamical matrix after division by SQRT(mass)
\end{verbatim}
 
After completing the vibrational analysis, we look up the hardest imaginary mode
(Eigenvectors after division by SQRT(mass)!)
in the OUTCAR file:
 
\begin{verbatim}
12 f/i=  23.224372 THz  145.923033 2PiTHz  774.681641 cm-1    96.048317 meV
            X        Y        Z          dx          dy          dz
      5.127046  0.000000  7.496000    0.000001    0.522103  -0.000009
      0.000000  0.000000  1.008000    -0.000006    0.530068    0.000000
      0.872954  0.000000  7.496000    -0.000== References ==
<references>
<ref name="Sander">[http://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.045209 T. Sander, E. Maggio and G. Kresse, Phys. Rev. B 92, 045209 (2015).]</ref>
</references>
----
[[The_VASP_Manual|Contents]]
 
[[Category:INCAR]][[Category:BSE]]
005    0.522067  -0.000007
      0.000000  0.000000  0.000000    0.000001  -0.111442    0.000001
\end{verbatim}
 
 
and use the last three columns to define the dimer axis in POSCAR:
 
\begin{verbatim}== References ==
<references>
<ref name="Sander">[http://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.045209 T. Sander, E. Maggio and G. Kresse, Phys. Rev. B 92, 045209 (2015).]</ref>
</references>
----
[[The_VASP_Manual|Contents]]
 
[[Category:INCAR]][[Category:BSE]]
 
ammonia flipping
1.
6. 0. 0.
0. 7. 0.== References ==
<references>
<ref name="Sander">[http://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.045209 T. Sander, E. Maggio and G. Kresse, Phys. Rev. B 92, 045209 (2015).]</ref>
</references>
----
[[The_VASP_Manual|Contents]]
 
[[Category:INCAR]][[Category:BSE]]
 
0. 0. 8.
H N
3 1
cart
      -0.872954        0.000000      -0.504000        ! coordinates for atom 1
        0.000000        0.000000        1.008000
        0.872954        0.000000      -0.504== References ==
<references>
<ref name="Sander">[http://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.045209 T. Sander, E. Maggio and G. Kresse, Phys. Rev. B 92, 045209 (2015).]</ref>
</references>
----
[[The_VASP_Manual|Contents]]
 
[[Category:INCAR]][[Category:BSE]]
000
        0.000000        0.000000        0.000000        ! coordinates for atom N
      ! here we define trial unstable direction:
        0.000001    0.522103  -0.000009      == References ==
<references>
<ref name="Sander">[http://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.045209 T. Sander, E. Maggio and G. Kresse, Phys. Rev. B 92, 045209 (2015).]</ref>
</references>
----
[[The_VASP_Manual|Contents]]
 
[[Category:INCAR]][[Category:BSE]]== References ==
<references>
<ref name="Sander">[http://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.045209 T. Sander, E. Maggio and G. Kresse, Phys. Rev. B 92, 045209 (2015).]</ref>
</references>
----
[[The_VASP_Manual|Contents]]
 
[[Category:INCAR]][[Category:BSE]]
 
  ! components for atom 1
      -0.000006    0.530068    0.000000
      -0.000005    0.522067  -0.000007== References ==
<references>
<ref name="Sander">[http://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.045209 T. Sander, E. Maggio and G. Kresse, Phys. Rev. B 92, 045209 (2015).]</ref>
</references>
----
[[The_VASP_Manual|Contents]]
 
[[Category:INCAR]][[Category:BSE]]== References ==
<references>
<ref name="Sander">[http://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.045209 T. Sander, E. Maggio and G. Kresse, Phys. Rev. B 92, 045209 (2015).]</ref>
</references>
----
[[The_VASP_Manual|Contents]]
 
[[Category:INCAR]][[Category:BSE]]


== References ==
== References ==
<references>
<ref name="Sander">[http://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.045209 T. Sander, E. Maggio and G. Kresse, Phys. Rev. B 92, 045209 (2015).]</ref>
</references>
----
[[The_VASP_Manual|Contents]]


[[Category:INCAR]][[Category:BSE]]
== References ==
<references>
<ref name="Sander">[http://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.045209 T. Sander, E. Maggio and G. Kresse, Phys. Rev. B 92, 045209 (2015).]</ref>
</references>
----
[[The_VASP_Manual|Contents]]
[[Category:INCAR]][[Category:BSE]]
== References ==
<references>
<ref name="Sander">[http://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.045209 T. Sander, E. Maggio and G. Kresse, Phys. Rev. B 92, 045209 (2015).]</ref>
</references>
----
[[The_VASP_Manual|Contents]]
[[Category:INCAR]][[Category:BSE]]
        0.000001  -0.111442    0.000001        ! components for atom N
\end{verbatim}
In order to perform IDM calculation, INCAR should contain the following lines:
\begin{verbatim}
NSW = 100         
Prec=Normal
IBRION=44          !  use the dimer method as optimization engine
EDIFFG=-0.03
\end{verbatim}
With this setting, algorithm converges in just a few relaxation steps. Further vibrational
analysis can be performed to prove that the relaxed structure is indeed a first order
saddle point (one imaginary frequency).
== References ==
<references>
<ref name="henkelman1999">[http://aip.scitation.org/doi/10.1063/1.480097 G. Henkelman and H. Jónsson, J. Chem. Phys. 111, 7010 (1999).]</ref>
</references>
----
----
[[The_VASP_Manual|Contents]]


[[Category:INCAR]]
[[Category:Transition states]][[Category:Ionic minimization]][[Category:Howto]]

Latest revision as of 09:52, 18 September 2024

The dimer method[1] is a technique for the optimization of transition states. In VASP, the improved dimer method (IDM) by Heyden et al. is implemented, and a detailed presentation of the method can be found in their paper[2]. The algorithm for IDM consists of the following cyclically repeated steps:

  • The curvature along the dimer axis is computed using finite differences. The initial dimer direction must be provided (see below).
  • The dimer is rotated such that its axis is parallel with the direction of the maximal negative curvature.
  • An optimization step is taken, and the potential energy is maximized along the unstable direction, (i.e., dimer axis) while it is minimized in all other directions.

The method is invoked by setting IBRION=44 in the INCAR file.

Furthermore, the user must specify the direction of the unstable mode. The corresponding dimensional vector is defined in the POSCAR file after the lines with atomic coordinates and a separating blank line. Note that the dimer direction is automatically normalized, i.e., the norm of the dimer axis is irrelevant. An example of a POSCAR file for a simulation with the dimer method is given in the following:

ammonia flipping
1.
6. 0. 0.
0. 7. 0.
0. 0. 8.
H N
3 1
cart
       -0.872954        0.000000       -0.504000        ! coordinates for atom 1
        0.000000        0.000000        1.008000
        0.872954        0.000000       -0.504000
        0.000000        0.000000        0.000000        ! coordinates for atom N
       ! here we define trial unstable direction:
        0.000001    0.522103   -0.000009        ! components for atom 1
       -0.000006    0.530068    0.000000
       -0.000005    0.522067   -0.000007
        0.000001   -0.111442    0.000001        ! components for atom N

As in the other structural optimization algorithms in VASP, convergence is controlled through the EDIFFG tag.

Experienced users can affect the performance of the dimer method by modifying the numerical values of the following parameters (the given example values are the default values):

  • FINDIFF=1 Use a forward (FINDIFF=1) or central (FINDIFF=2) difference formula for the numerical differentiation to compute the curvature along the dimer direction
  • DIMER_DIST=0.01 The step size for a numerical differentiation (in )
  • MINROT=0.01 Dimer is rotated only if the predicted rotation angle is greater than MINROT (rad.)
  • STEP_SIZE=0.01 Trial step size for optimization step (in )
  • STEP_MAX=0.1 Trust radius (upper limit) for the optimization step (in )

Important information about the progress of optimization is written in the OUTCAR file after the expression DIMER METHOD.

In particular, it is useful to check the curvature along the dimer direction, which should be a negative number (a long sequence of positive numbers usually indicates that the algorithm fails to converge to the correct transition state).

Mind: The current implementation does not support lattice optimizations (ISIF>2) and can be used only for the relaxation of atomic positions.

Initial dimer axis

The direction of an unstable vibrational mode can be obtained by performing the vibrational analysis (IBRION=5) and taking the x-, y-, and z- components of the imaginary vibrational mode (after division by !) parallel with the reaction coordinate. Note that in order to plot "Eigenvectors after division by SQRT(mass)", NWRITE=3 should be used.

Practical example

In this example, the transition state for the ammonia flipping is computed. All calculations discussed here were performed using the PBE functional, Brillouin zone sampling was restricted to the gamma point. This practical example can be completed in a few seconds on a standard desktop PC. The starting structure for the IDM simulation should be a reasonable guess for the transition state. A POSCAR file with the initial guess for the ammonia flipping looks like this:

ammonia flipping
1.
6. 0. 0.
0. 7. 0.
0. 0. 8.
H N
3 1
cart
       -0.872954        0.000000       -0.504000
        0.000000        0.000000        1.008000
        0.872954        0.000000       -0.504000
        0.000000        0.000000        0.000000

As an input for the dimer method, the direction of the unstable mode (dimer axis) is needed. This can be obtained by performing vibrational analysis. The INCAR file should contain the following lines:

NSW = 1
Prec = Normal
IBRION = 5                 ! perform vibrational analysis
NFREE = 2                  ! select central differences algorithm
POTIM = 0.02               ! step for the numerical differenciation 
NWRITE = 3                 ! write down eigenvectors of dynamical matrix after division by SQRT(mass)

After completing the vibrational analysis, we look up the hardest imaginary mode (Eigenvectors after division by SQRT(mass)!) in the OUTCAR file:

 12 f/i=   23.224372 THz   145.923033 2PiTHz  774.681641 cm-1    96.048317 meV
             X         Y         Z           dx          dy          dz
      5.127046  0.000000  7.496000     0.000001    0.522103   -0.000009
      0.000000  0.000000  1.008000    -0.000006    0.530068    0.000000
      0.872954  0.000000  7.496000    -0.000005    0.522067   -0.000007
      0.000000  0.000000  0.000000     0.000001   -0.111442    0.000001

and use the last three columns to define the dimer axis in the POSCAR file:

ammonia flipping
1.
6. 0. 0.
0. 7. 0.
0. 0. 8.
H N
3 1
cart
       -0.872954        0.000000       -0.504000        ! coordinates for atom 1
        0.000000        0.000000        1.008000
        0.872954        0.000000       -0.504000
        0.000000        0.000000        0.000000        ! coordinates for atom N
        ! here we define trial unstable direction:
        0.000001    0.522103   -0.000009        ! components for atom 1
       -0.000006    0.530068    0.000000
       -0.000005    0.522067   -0.000007
        0.000001   -0.111442    0.000001        ! components for atom N

In order to perform IDM calculation, the INCAR file should contain the following lines:

NSW = 100           
Prec=Normal
IBRION=44           !  use the dimer method as optimization engine
EDIFFG=-0.03

With this setting, the algorithm converges in just a few relaxation steps. Further vibrational analysis can be performed to prove that the relaxed structure is indeed a first-order saddle point (one imaginary frequency).


Mind:

If you perform a frequency calculation on this optimized structure, take care to consider the translational modes that are present. These will appear as small imaginary frequencies, less than 5 cm-1 in the OUTCAR file and may be recognized by the "dx" terms for each atom being large, while the remaining "dy" and "dz" terms are near zero (for x translation). This will result in multiple imaginary frequencies. The goal is to have one "large" imaginary frequency, and then these small translational modes should be set to zero for calculating thermodynamic properties.

For example, the x-translation is shown below:

 11 f/i=    0.092375 THz     0.580407 2PiTHz    3.081284 cm-1     0.382030 meV
            X         Y         Z           dx          dy          dz
     5.127046  0.000000  7.496000    -0.247337    0.000339    0.008273
     0.000000  0.000000  1.008000    -0.232726    0.000336   -0.000038
     0.872954  0.000000  7.496000    -0.247322    0.000340   -0.008357
     0.000000  0.000000  0.000000    -0.242501    0.000341   -0.000041

Related tags and articles

FINDIFF, DIMER_DIST, MINROT, STEP_SIZE, STEP_MAX

References