List of hybrid functionals: Difference between revisions
No edit summary |
|||
(36 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
A certain number of hybrid functionals are available in VASP, and furthermore if VASP is [[Makefile.include#Libxc_.28optional.29|compiled]] with the library of exchange-correlation functionals Libxc, then most of the existing hybrid functionals can be used{{cite|libxc_list}}. Examples of {{FILE|INCAR}} files are shown below. | A certain number of [[Hybrid functionals: formalism|unscreened and screened hybrid functionals]] are available in VASP, and furthermore if VASP is [[Makefile.include#Libxc_.28optional.29|compiled]] with the library of exchange-correlation functionals Libxc, then most of the existing hybrid functionals can be used{{cite|libxc_list}}. Examples of {{FILE|INCAR}} files are shown below. Since VASP.6.4.0 it is possible to use hybrid functionals that mix meta-GGA and Hartree-Fock exchange. Note that it is in general recommended to use the PBE {{FILE|POTCAR}} files for hybrid functionals. | ||
=== Range-separated hybrid functionals === | === Range-separated hybrid functionals === | ||
Line 9: | Line 9: | ||
{{TAG|HFSCREEN}} = 0.2 | {{TAG|HFSCREEN}} = 0.2 | ||
:with the default values {{TAG|AEXX}}=0.25, {{TAG|AGGAX}}=1-{{TAG|AEXX}}=0.75, {{TAG|AGGAC}}=1 | :with the default values {{TAG|AEXX}}=0.25, {{TAG|AGGAX}}=1-{{TAG|AEXX}}=0.75, {{TAG|AGGAC}}=1, and {{TAG|ALDAC}}=1. | ||
</span> | </span> | ||
Line 18: | Line 18: | ||
{{TAG|HFSCREEN}} = 0.3 | {{TAG|HFSCREEN}} = 0.3 | ||
:with the default values {{TAG|AEXX}}=0.25, {{TAG|AGGAX}}=1-{{TAG|AEXX}}=0.75, {{TAG|AGGAC}}=1 | :with the default values {{TAG|AEXX}}=0.25, {{TAG|AGGAX}}=1-{{TAG|AEXX}}=0.75, {{TAG|AGGAC}}=1, and {{TAG|ALDAC}}=1. | ||
</span> | </span> | ||
Line 27: | Line 27: | ||
{{TAG|HFSCREEN}} = 0.2 | {{TAG|HFSCREEN}} = 0.2 | ||
:with the default values {{TAG|AEXX}}=0.25, {{TAG|AGGAX}}=1-{{TAG|AEXX}}=0.75, {{TAG|AGGAC}}=1.0 and {{TAG|ALDAC}}=1.0, and | :with the default values {{TAG|AEXX}}=0.25, {{TAG|AGGAX}}=1-{{TAG|AEXX}}=0.75, {{TAG|AGGAC}}=1, and {{TAG|ALDAC}}=1. | ||
</span> | |||
<span id="DDH (dielectric-dependent hybrid)"> | |||
*Dielectric-dependent hybrid (DDH) functional{{cite|chen2018nonempirical}}{{cite|cui2018doubly}} | |||
{{TAG|LMODELHF}} = .TRUE. | |||
{{TAG|AEXX}} = <math>\varepsilon^{-1}</math> | |||
{{TAG|HFSCREEN}} = <math>\mu</math> | |||
{{TAG|GGA}} = PE | |||
:where <math>\varepsilon^{-1}</math> is the inverse dielectric constant and <math>\mu</math> is the range-separation parameter. See a detailed description of the DDH functionals in the documentation for the {{TAG|LMODELHF}} tag. | |||
</span> | |||
<span id="RSHXLDA"> | |||
*RSHXLDA{{cite|gerber:jcp:2007}} | |||
{{TAG|LHFCALC}} = .TRUE. | |||
{{TAG|LRHFCALC}} = .TRUE. | |||
{{TAG|GGA}} = CA (or PZ) | |||
{{TAG|HFSCREEN}} = 0.75 # Optimal value for solids | |||
:with the default values {{TAG|AEXX}}=1, {{TAG|AGGAX}}=1-{{TAG|AEXX}}=0, {{TAG|AGGAC}}=1, and {{TAG|ALDAC}}=1. | |||
</span> | |||
<span id="RSHXPBE"> | |||
*RSHXPBE{{cite|gerber:cpl:2005}} | |||
{{TAG|LHFCALC}} = .TRUE. | |||
{{TAG|LRHFCALC}} = .TRUE. | |||
{{TAG|GGA}} = PE | |||
{{TAG|HFSCREEN}} = 0.91 # Optimal value for the enthalpies of formation of molecules | |||
:with the default values {{TAG|AEXX}}=1, {{TAG|AGGAX}}=1-{{TAG|AEXX}}=0, {{TAG|AGGAC}}=1, and {{TAG|ALDAC}}=1. | |||
</span> | </span> | ||
Line 35: | Line 65: | ||
{{TAG|LHFCALC}} = .TRUE. | {{TAG|LHFCALC}} = .TRUE. | ||
{{TAG|GGA}} = PE | {{TAG|GGA}} = PE | ||
:with the default values {{TAG|AEXX}}=0.25, {{TAG|AGGAX}}=1-{{TAG|AEXX}}=0.75, {{TAG|AGGAC}}=1 | |||
:with the default values {{TAG|AEXX}}=0.25, {{TAG|AGGAX}}=1-{{TAG|AEXX}}=0.75, {{TAG|AGGAC}}=1, and {{TAG|ALDAC}}=1. | |||
*B3LYP{{cite|stephens:jpc:94}} with VWN3 (or VWN5) for LDA correlation | *B3LYP{{cite|stephens:jpc:94}} with VWN3 (or VWN5) for LDA correlation | ||
Line 45: | Line 76: | ||
{{TAG|ALDAC}} = 0.19 | {{TAG|ALDAC}} = 0.19 | ||
: | :with the default value {{TAG|ALDAX}}=1-{{TAG|AEXX}}=0.8. | ||
*B3PW91{{cite|becke:jcp:93}} (using Libxc, see the tag {{TAG|LIBXC1}}) | *B3PW91{{cite|becke:jcp:93}} (using Libxc, see the tag {{TAG|LIBXC1}}) | ||
{{TAG|LHFCALC}} = .TRUE. | {{TAG|LHFCALC}} = .TRUE. | ||
{{TAG|GGA}} = LIBXC | {{TAG|GGA}} = LIBXC | ||
{{TAG|LIBXC1}} = 401 | {{TAG|LIBXC1}} = HYB_GGA_XC_B3PW91 # or 401 | ||
{{TAG|AEXX}} = 0.2 | {{TAG|AEXX}} = 0.2 | ||
*B1-WC{{cite|bilc:prb:08}} (using Libxc, see the tag {{TAG|LIBXC1}}) | *B1-WC{{cite|bilc:prb:08}} (using Libxc, see the tag {{TAG|LIBXC1}}) | ||
{{TAG|LHFCALC}} = .TRUE. | {{TAG|LHFCALC}} = .TRUE. | ||
{{TAG|GGA}} = LIBXC | {{TAG|GGA}} = LIBXC | ||
{{TAG|LIBXC1}} = 412 | {{TAG|LIBXC1}} = HYB_GGA_XC_B1WC # or 412 | ||
{{TAG|AEXX}} = 0.16 | {{TAG|AEXX}} = 0.16 | ||
:and | *SCAN0 | ||
{{TAG|LHFCALC}} = .TRUE. | |||
{{TAG|METAGGA}} = SCAN | |||
:with the default values {{TAG|AEXX}}=0.25, {{TAG|AMGGAX}}=1-{{TAG|AEXX}}=0.75, and {{TAG|AMGGAC}}=1. | |||
*Hartree-Fock (no correlation) | *Hartree-Fock (no correlation) | ||
{{TAG|LHFCALC}} = .TRUE. | {{TAG|LHFCALC}} = .TRUE. | ||
{{TAG|AEXX}} = 1 | {{TAG|AEXX}} = 1 | ||
:with the default values {{TAG|AGGAX}}=1-{{TAG|AEXX}}= | :with the default values {{TAG|AGGAX}}=1-{{TAG|AEXX}}=0, {{TAG|ALDAC}}=0, and {{TAG|AGGAC}}=0. | ||
{{NB|mind|Note the default values when {{TAG|LHFCALC}}{{=}}.TRUE.: | |||
*{{TAG|ALDAX}}, {{TAG|AGGAX}} and {{TAG|AMGGAX}} are set to 1-{{TAG|AEXX}}. | |||
* | |||
*{{TAG|ALDAC}}, {{TAG|AGGAC}} and {{TAG|AMGGAC}} are set to 0 if {{TAG|AEXX}}{{=}}1 or to 1 if {{TAG|AEXX}}<math>\neq</math>1.}} | |||
== Related tags and articles == | == Related tags and articles == | ||
{{TAG|GGA}}, | |||
{{TAG|METAGGA}}, | |||
{{TAG|LIBXC1}}, | |||
{{TAG|LIBXC2}}, | |||
{{TAG|AEXX}}, | {{TAG|AEXX}}, | ||
{{TAG|ALDAX}}, | {{TAG|ALDAX}}, | ||
Line 79: | Line 121: | ||
{{TAG|LHFCALC}}, | {{TAG|LHFCALC}}, | ||
{{TAG|HFSCREEN}}, | {{TAG|HFSCREEN}}, | ||
{{TAG| | {{TAG|LMODELHF}}, | ||
{{TAG| | {{TAG|LRHFCALC}}, | ||
[[Hybrid_functionals:_formalism|Hybrid functionals: formalism]] | |||
== References == | == References == | ||
Line 86: | Line 129: | ||
---- | ---- | ||
[[Category:Exchange-correlation functionals]][[Category:Hybrid_functionals]] | [[Category:Exchange-correlation functionals]][[Category:Hybrid_functionals]][[Category:Howto]] |
Latest revision as of 11:52, 14 June 2024
A certain number of unscreened and screened hybrid functionals are available in VASP, and furthermore if VASP is compiled with the library of exchange-correlation functionals Libxc, then most of the existing hybrid functionals can be used[1]. Examples of INCAR files are shown below. Since VASP.6.4.0 it is possible to use hybrid functionals that mix meta-GGA and Hartree-Fock exchange. Note that it is in general recommended to use the PBE POTCAR files for hybrid functionals.
Range-separated hybrid functionals
- HSE06[2]
LHFCALC = .TRUE. GGA = PE HFSCREEN = 0.2
LHFCALC = .TRUE. GGA = PE HFSCREEN = 0.3
- HSEsol[6]
LHFCALC = .TRUE. GGA = PS HFSCREEN = 0.2
LMODELHF = .TRUE. AEXX = HFSCREEN = GGA = PE
- where is the inverse dielectric constant and is the range-separation parameter. See a detailed description of the DDH functionals in the documentation for the LMODELHF tag.
- RSHXLDA[9]
LHFCALC = .TRUE. LRHFCALC = .TRUE. GGA = CA (or PZ) HFSCREEN = 0.75 # Optimal value for solids
- RSHXPBE[10]
LHFCALC = .TRUE. LRHFCALC = .TRUE. GGA = PE HFSCREEN = 0.91 # Optimal value for the enthalpies of formation of molecules
Unscreened hybrid functionals
LHFCALC = .TRUE. GGA = PE
- B3LYP[14] with VWN3 (or VWN5) for LDA correlation
LHFCALC = .TRUE. GGA = B3 (or B5) AEXX = 0.2 AGGAX = 0.72 AGGAC = 0.81 ALDAC = 0.19
LHFCALC = .TRUE. GGA = LIBXC LIBXC1 = HYB_GGA_XC_B3PW91 # or 401 AEXX = 0.2
LHFCALC = .TRUE. GGA = LIBXC LIBXC1 = HYB_GGA_XC_B1WC # or 412 AEXX = 0.16
- SCAN0
LHFCALC = .TRUE. METAGGA = SCAN
- Hartree-Fock (no correlation)
LHFCALC = .TRUE. AEXX = 1
Mind: Note the default values when LHFCALC=.TRUE.: |
Related tags and articles
GGA, METAGGA, LIBXC1, LIBXC2, AEXX, ALDAX, ALDAC, AGGAX, AGGAC, AMGGAX, AMGGAC, LHFCALC, HFSCREEN, LMODELHF, LRHFCALC, Hybrid functionals: formalism
References
- ↑ https://libxc.gitlab.io/functionals/
- ↑ A. V. Krukau , O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, J. Chem. Phys. 125, 224106 (2006).
- ↑ J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).
- ↑ J. Heyd and G. E. Scuseria, J. Chem. Phys. 121, 1187 (2004).
- ↑ J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).
- ↑ L. Schimka, J. Harl, and G. Kresse, J. Chem. Phys. 134, 024116 (2011).
- ↑ W. Chen, G. Miceli, G.M. Rignanese, and A. Pasquarello, Nonempirical dielectric-dependent hybrid functional with range separation for semiconductors and insulators, Phys. Rev. Mater. 2, 073803 (2018).
- ↑ Z.H. Cui, Y.C. Wang, M.Y. Zhang, X. Xu, and H. Jiang, Doubly Screened Hybrid Functional: An Accurate First-Principles Approach for Both Narrow- and Wide-Gap Semiconductors J. Phys. Chem. Lett., 9, 2338-2345 (2018).
- ↑ I. C. Gerber, J. G. Ángyán, M. Marsman, and G. Kresse, Range separated hybrid density functional with long-range Hartree-Fock exchange applied to solids, J. Chem. Phys. 127, 054101 (2007).
- ↑ I. C. Gerber and J. G. Ángyán, Hybrid functional with separated range, Chem. Phys. Lett. 415, 100 (2005).
- ↑ J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).
- ↑ M. Ernzerhof and G. E. Scuseria, J. Chem. Phys. 110, 5029 (1999).
- ↑ C. Adamo and V. Barone, Phys. Rev. Lett., 110, 6158 (1999).
- ↑ P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
- ↑ A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
- ↑ D. I. Bilc, R. Orlando, R. Shaltaf, G.-M. Rignanese, J. Iniguez, and P. Ghosez, Phys. Rev. B 77, 165107 (2008).