Category:Interface pinning: Difference between revisions

From VASP Wiki
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 26: Line 26:
Computing the forces requires a differentiable <math>Q_6(\mathbf{R})</math>.
Computing the forces requires a differentiable <math>Q_6(\mathbf{R})</math>.
<!-- PLEASE REPHRASE - I did not understand this part and how it relates to Q_6(R) -->
<!-- PLEASE REPHRASE - I did not understand this part and how it relates to Q_6(R) -->
In the VASP implementation smooth fading function <math>w(r)</math> is used to weight each pair of atoms at distance <math>r</math> for the calculation of the <math>Q_6(\mathbf{R},w)</math> order parameter
In the VASP implementation a smooth fading function <math>w(r)</math> is used to weight each pair of atoms at distance <math>r</math> for the calculation of the <math>Q_6(\mathbf{R},w)</math> order parameter. This fading function is given as


:<math> w(r) = \left\{ \begin{array}{cl} 1  &\textrm{for} \,\, r\leq n \\
:<math> w(r) = \left\{ \begin{array}{cl} 1  &\textrm{for} \,\, r\leq n \\
Line 44: Line 44:


'''Interface pinning''' uses the <math>Np_zT</math> ensemble where the barostat only acts along the <math>z</math> direction.
'''Interface pinning''' uses the <math>Np_zT</math> ensemble where the barostat only acts along the <math>z</math> direction.
This uses a Langevin thermostat and a Parrinello-Rahman barostat with lattice constraints in the remaining two dimensions.
This ensemble uses a Langevin thermostat and a Parrinello-Rahman barostat with lattice constraints in the remaining two dimensions.
The solid-liquid interface must be in the <math>x</math>-<math>y</math> plane perpendicular to the action of the barostat.
The solid-liquid interface must be in the <math>x</math>-<math>y</math> plane perpendicular to the action of the barostat.


Line 74: Line 74:


----
----
[[The_VASP_Manual|Contents]]


[[Category:VASP|Interface Pinning]][[Category:Molecular Dynamics]]
[[Category:VASP|Interface pinning]][[Category:Molecular dynamics]]

Latest revision as of 10:25, 18 October 2023

Interface pinning[1] is used to determine the melting point from a molecular-dynamics simulation of the interface between a liquid and a solid phase. The typical behavior of such a simulation is to freeze or melt, while the interface is pinned with a bias potential. This potential applies an energy penalty for deviations from the desired two-phase system. It is preferred simulating above the melting point because the bias potential prevents melting better than freezing.

The Steinhardt-Nelson[2] order parameter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): Q_{6} discriminates between the solid and the liquid phase. With the bias potential

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle U_\text{bias}(\mathbf{R}) = \frac\kappa2 \left(Q_6(\mathbf{R}) - A\right)^2 }

penalizes differences between the order parameter for the current configuration Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): Q_{6}({{\mathbf {R}}}) and the one for the desired interface Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): A . Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): \kappa is an adjustable parameter determining the strength of the pinning.

Under the action of the bias potential, the system equilibrates to the desired two-phase configuration. An important observable is the difference between the average order parameter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle \langle Q_6\rangle} in equilibrium and the desired order parameter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): A . This difference relates to the the chemical potentials of the solid Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle \mu_\text{solid}} and the liquid Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle \mu_\text{liquid}} phase

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle N(\mu_\text{solid} - \mu_\text{liquid}) = \kappa (Q_{6,\text{solid}} - Q_{6,\text{liquid}})(\langle Q_6 \rangle - A) }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): N is the number of atoms in the simulation.

Computing the forces requires a differentiable Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): Q_{6}({\mathbf {R}}) . In the VASP implementation a smooth fading function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): w(r) is used to weight each pair of atoms at distance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): r for the calculation of the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): {\displaystyle Q_6(\mathbf{R},w)} order parameter. This fading function is given as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): w(r)=\left\{{\begin{array}{cl}1&{\textrm {for}}\,\,r\leq n\\{\frac {(f^{2}-r^{2})^{2}(f^{2}-3n^{2}+2r^{2})}{(f^{2}-n^{2})^{3}}}&{\textrm {for}}\,\,n<r<f\\0&{\textrm {for}}\,\,f\leq r\end{array}}\right.


Here Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): n and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): f are the near- and far-fading distances, respectively. The radial distribution function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): g(r) of the crystal phase yields a good choice for the fading range. To prevent spurious stress, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): g(r) should be small where the derivative of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): w(r) is large. Set the near fading distance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): n to the distance where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): g(r) goes below 1 after the first peak. Set the far fading distance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): f to the distance where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): g(r) goes above 1 again before the second peak.

How to

Interface pinning uses the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): Np_{z}T ensemble where the barostat only acts along the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): z direction. This ensemble uses a Langevin thermostat and a Parrinello-Rahman barostat with lattice constraints in the remaining two dimensions. The solid-liquid interface must be in the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): x -Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): y plane perpendicular to the action of the barostat.

Set the following tags for the interface pinning method:

OFIELD_Q6_NEAR
Defines the near-fading distance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): n .
OFIELD_Q6_FAR
Defines the far-fading distance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): f .
OFIELD_KAPPA
Defines the coupling strength Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): \kappa of the bias potential.
OFIELD_A
Defines the desired value of the order parameter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://www.vasp.at/wiki/restbase/vasp.at/v1/":): A .

The following example INCAR file calculates the interface pinning in sodium[1]:

TEBEG = 400                   # temperature in K
POTIM = 4                     # timestep in fs
IBRION = 0                    # run molecular dynamics
ISIF = 3                      # use Parrinello-Rahman barostat for the lattice
MDALGO = 3                    # use Langevin thermostat
LANGEVIN_GAMMA_L = 3.0        # friction coefficient for the lattice degree of freedoms (DoF)
LANGEVIN_GAMMA = 1.0          # friction coefficient for atomic DoFs for each species
PMASS = 100                   # mass for lattice DoFs
LATTICE_CONSTRAINTS = F F T   # fix x-y plane, release z lattice dynamics
OFIELD_Q6_NEAR = 3.22         # near fading distance for function w(r) in Angstrom
OFIELD_Q6_FAR = 4.384         # far fading distance for function w(r) in Angstrom
OFIELD_KAPPA = 500            # strength of bias potential in eV/(unit of Q)^2
OFIELD_A = 0.15               # desired value of the Q6 order parameter

References



Pages in category "Interface pinning"

The following 4 pages are in this category, out of 4 total.