Category:Interface pinning: Difference between revisions

From VASP Wiki
(37 intermediate revisions by 3 users not shown)
Line 1: Line 1:
== Theory ==
'''Interface pinning'''{{cite|pedersen:prb:13}} is used to determine the melting point from a [[:Category: Molecular dynamics|molecular-dynamics]] simulation of the interface between a liquid and a solid phase.  
Interface Pinning is a method for finding melting points from an MD simulation of a system where the liquid and the solid phase are in contact. To prevent melting or freezing at constant pressure and constant temperature, a bias potential applies a penalty energy for deviations from the desired two-phase system.
<!-- == Theory == -->
The typical behavior of such a simulation is to freeze or melt, while the interface is ''pinned'' with a bias potential.
This potential applies an energy penalty for deviations from the desired two-phase system.
It is preferred simulating above the melting point because the bias potential prevents melting better than freezing.


The Steinhardt-Nelson order parameter <math>Q_6</math> is used for discriminating the solid from the liquid phase and the bias potential is given by
The Steinhardt-Nelson{{cite|steinhardt:prb:83}} order parameter <math>Q_6</math> discriminates between the solid and the liquid phase.
With the bias potential


<math>U_\textrm{bias}(\mathbf{R}) = \frac\kappa2 \left(Q_6(\mathbf{R}) - a\right)^2 </math>
:<math>U_\text{bias}(\mathbf{R}) = \frac\kappa2 \left(Q_6(\mathbf{R}) - A\right)^2 </math>


where <math>Q_6({\mathbf{R}})</math> is the Steinhardt-Nelson <math>Q_6</math> orientational order parameter for the current configuration <math>\mathbf{R}</math> and <math>a</math> is the desired value of the order parameter close to the order parameter of the initial two phase configuration.
penalizes differences between the order parameter for the current configuration <math>Q_6({\mathbf{R}})</math> and the one for the desired interface <math>A</math>.
<math>\kappa</math> is an adjustable parameter determining the strength of the pinning.


With the bias potential enabled, the system can equilibrate while staying in the two phase configuration. From the difference of the average order parameter <math>\langle Q_6 \rangle</math> in equilibrium and the desired order
Under the action of the bias potential, the system equilibrates to the desired two-phase configuration.
parameter <math>a</math> one can directly compute the difference of the chemical potential of the solid and the liquid phase:
An important observable is the difference between the average order parameter <math>\langle Q_6\rangle</math> in equilibrium and the desired order parameter <math>A</math>.
This difference relates to the the chemical potentials of the solid <math>\mu_\text{solid}</math> and the liquid <math>\mu_\text{liquid}</math> phase


<math> N(\mu_\textrm{solid} - \mu_\textrm{liquid}) =\kappa (Q_{6 \textrm{solid}} - Q_{6 \textrm{liquid}}) (\langle Q_6 \rangle - a) </math>
:<math>
N(\mu_\text{solid} - \mu_\text{liquid}) =  
\kappa (Q_{6,\text{solid}} - Q_{6,\text{liquid}})(\langle Q_6 \rangle - A)
</math>


where <math>N</math> is the number of atoms in the simulation.
where <math>N</math> is the number of atoms in the simulation.


It is preferable to simulate in the super heated regime, as it is easier for the bias potential to prevent a system from melting than to prevent a system from freezing.
Computing the forces requires a differentiable <math>Q_6(\mathbf{R})</math>.
<!-- PLEASE REPHRASE - I did not understand this part and how it relates to Q_6(R) -->
In the VASP implementation a smooth fading function <math>w(r)</math> is used to weight each pair of atoms at distance <math>r</math> for the calculation of the <math>Q_6(\mathbf{R},w)</math> order parameter. This fading function is given as


<math>Q_6(\mathbf{R})</math> needs to be continuous for computing the forces on the atoms originating from the bias potential. We use a smooth fading function <math>w(r)</math> to weight each pair of atoms at distance <math>r</math> for the calculation of the <math>Q_6</math> order parameter:
:<math> w(r) = \left\{ \begin{array}{cl} 1  &\textrm{for} \,\, r\leq n \\
 
<math> w(r) = \left\{ \begin{array}{cl} 1  &\textrm{for} \,\, r\leq n \\
                       \frac{(f^2 - r^2)^2 (f^2 - 3n^2 + 2r^2)}{(f^2 - n^2)^3}  &\textrm{for} \,\, n<r<f \\
                       \frac{(f^2 - r^2)^2 (f^2 - 3n^2 + 2r^2)}{(f^2 - n^2)^3}  &\textrm{for} \,\, n<r<f \\
                       0  &\textrm{for} \,\,f\leq r \end{array}\right. </math>
                       0  &\textrm{for} \,\,f\leq r \end{array}\right. </math>


where <math>n</math> and <math>f</math> are the near and far fading distances given in the {{TAG|INCAR}} file respectively. A good choice for the fading range can be made from the radial distribution function <math>g(r)</math> of the crystal phase. We recommend to use the distance where <math>g(r)</math> goes below 1 after the first peak as the near fading distance <math>n</math> and the distance where <math>g(r)</math> goes above 1 again before the second peak as the far fading distance <math>f</math>. <math>g(r)</math> should be low where the fading function has a high derivative to prevent spurious stress.
<!-- is w(r) equivalent to (1 - t)^2(1 + 2t) with t = (r - n) / (f - n)? -->
 
Here <math>n</math> and <math>f</math> are the near- and far-fading distances, respectively.  
<!-- END REPHRASE -->
The radial distribution function <math>g(r)</math> of the crystal phase yields a good choice for the fading range.
To prevent spurious stress, <math>g(r)</math> should be small where the derivative of <math>w(r)</math> is large.
Set the near fading distance <math>n</math> to the distance where <math>g(r)</math> goes below 1 after the first peak.
Set the far fading distance <math>f</math> to the distance where <math>g(r)</math> goes above 1 again before the second peak.
== How to ==
 
'''Interface pinning''' uses the <math>Np_zT</math> ensemble where the barostat only acts along the <math>z</math> direction.
This ensemble uses a Langevin thermostat and a Parrinello-Rahman barostat with lattice constraints in the remaining two dimensions.
The solid-liquid interface must be in the <math>x</math>-<math>y</math> plane perpendicular to the action of the barostat.


The interface pinning method uses the <math>Np_zT</math> ensemble where the barostat only acts on the direction of the lattice that is perpendicular to the solid liquid interface. We recommend to use a Langevin thermostat and a Parrinello-Rahman barostat with lattice constraints as demonstrated in the listing below assuming a solid liquid interface perpendicular to the <math>z</math> direction.
Set the following tags for the '''interface pinning''' method:
;{{TAG|OFIELD_Q6_NEAR}}: Defines the near-fading distance <math>n</math>.
;{{TAG|OFIELD_Q6_FAR}}: Defines the far-fading distance <math>f</math>.
;{{TAG|OFIELD_KAPPA}}: Defines the coupling strength <math>\kappa</math> of the bias potential.
;{{TAG|OFIELD_A}}: Defines the desired value of the order parameter <math>A</math>.


== How to ==
The following example {{TAG|INCAR}} file calculates the interface pinning in sodium{{cite|pedersen:prb:13}}:
The following is a sample {{TAG|INCAR}} file for interface pinning of sodium{{cite|pedersen:prb:13}}:
  {{TAGBL|TEBEG}} = 400                  # temperature in K
  {{TAGBL|TEBEG}} = 400                  # temperature in K
  {{TAGBL|POTIM}} = 4                    # timestep in fs
  {{TAGBL|POTIM}} = 4                    # timestep in fs
  {{TAGBL|IBRION}} = 0                    # do MD
  {{TAGBL|IBRION}} = 0                    # run molecular dynamics
  {{TAGBL|ISIF}} = 3                      # use Parrinello-Rahman barostat for the lattice
  {{TAGBL|ISIF}} = 3                      # use Parrinello-Rahman barostat for the lattice
  {{TAGBL|MDALGO}} = 3                    # use Langevin thermostat
  {{TAGBL|MDALGO}} = 3                    # use Langevin thermostat
  {{TAGBL|LANGEVIN_GAMMA}} = 1.0         # friction coef. for atomic DoFs for each species
  {{TAGBL|LANGEVIN_GAMMA_L}} = 3.0       # friction coefficient for the lattice degree of freedoms (DoF)
  {{TAGBL|LANGEVIN_GAMMA_L}} = 3.0       # friction coef. for the lattice DoFs
  {{TAGBL|LANGEVIN_GAMMA}} = 1.0         # friction coefficient for atomic DoFs for each species
  {{TAGBL|PMASS}} = 100                  # mass for lattice DoFs
  {{TAGBL|PMASS}} = 100                  # mass for lattice DoFs
  {{TAGBL|LATTICE_CONSTRAINTS}} = F F T  # fix x&y, release z lattice dynamics
  {{TAGBL|LATTICE_CONSTRAINTS}} = F F T  # fix x-y plane, release z lattice dynamics
  {{TAGBL|OFIELD_Q6_NEAR}} = 3.22        # fading distances for computing a continuous Q6
  {{TAGBL|OFIELD_Q6_NEAR}} = 3.22        # near fading distance for function w(r) in Angstrom
  {{TAGBL|OFIELD_Q6_FAR}} = 4.384        # in Angstrom
  {{TAGBL|OFIELD_Q6_FAR}} = 4.384        # far fading distance for function w(r) in Angstrom
  {{TAGBL|OFIELD_KAPPA}} = 500            # strength of bias potential in eV/(unit of Q)^2
  {{TAGBL|OFIELD_KAPPA}} = 500            # strength of bias potential in eV/(unit of Q)^2
  {{TAGBL|OFIELD_A}} = 0.15              # desired value of the Q6 order parameter
  {{TAGBL|OFIELD_A}} = 0.15              # desired value of the Q6 order parameter


== References ==
<references/>
<noinclude>


----
----
[[The_VASP_Manual|Contents]]


[[Category:VASP|Interface Pinning]][[Category:Molecular Dynamics]]
[[Category:VASP|Interface pinning]][[Category:Molecular dynamics]]

Revision as of 10:25, 18 October 2023

Interface pinning[1] is used to determine the melting point from a molecular-dynamics simulation of the interface between a liquid and a solid phase. The typical behavior of such a simulation is to freeze or melt, while the interface is pinned with a bias potential. This potential applies an energy penalty for deviations from the desired two-phase system. It is preferred simulating above the melting point because the bias potential prevents melting better than freezing.

The Steinhardt-Nelson[2] order parameter discriminates between the solid and the liquid phase. With the bias potential

penalizes differences between the order parameter for the current configuration and the one for the desired interface . is an adjustable parameter determining the strength of the pinning.

Under the action of the bias potential, the system equilibrates to the desired two-phase configuration. An important observable is the difference between the average order parameter in equilibrium and the desired order parameter . This difference relates to the the chemical potentials of the solid and the liquid phase

where is the number of atoms in the simulation.

Computing the forces requires a differentiable . In the VASP implementation a smooth fading function is used to weight each pair of atoms at distance for the calculation of the order parameter. This fading function is given as


Here and are the near- and far-fading distances, respectively. The radial distribution function of the crystal phase yields a good choice for the fading range. To prevent spurious stress, should be small where the derivative of is large. Set the near fading distance to the distance where goes below 1 after the first peak. Set the far fading distance to the distance where goes above 1 again before the second peak.

How to

Interface pinning uses the ensemble where the barostat only acts along the direction. This ensemble uses a Langevin thermostat and a Parrinello-Rahman barostat with lattice constraints in the remaining two dimensions. The solid-liquid interface must be in the - plane perpendicular to the action of the barostat.

Set the following tags for the interface pinning method:

OFIELD_Q6_NEAR
Defines the near-fading distance .
OFIELD_Q6_FAR
Defines the far-fading distance .
OFIELD_KAPPA
Defines the coupling strength of the bias potential.
OFIELD_A
Defines the desired value of the order parameter .

The following example INCAR file calculates the interface pinning in sodium[1]:

TEBEG = 400                   # temperature in K
POTIM = 4                     # timestep in fs
IBRION = 0                    # run molecular dynamics
ISIF = 3                      # use Parrinello-Rahman barostat for the lattice
MDALGO = 3                    # use Langevin thermostat
LANGEVIN_GAMMA_L = 3.0        # friction coefficient for the lattice degree of freedoms (DoF)
LANGEVIN_GAMMA = 1.0          # friction coefficient for atomic DoFs for each species
PMASS = 100                   # mass for lattice DoFs
LATTICE_CONSTRAINTS = F F T   # fix x-y plane, release z lattice dynamics
OFIELD_Q6_NEAR = 3.22         # near fading distance for function w(r) in Angstrom
OFIELD_Q6_FAR = 4.384         # far fading distance for function w(r) in Angstrom
OFIELD_KAPPA = 500            # strength of bias potential in eV/(unit of Q)^2
OFIELD_A = 0.15               # desired value of the Q6 order parameter

References



This category currently contains no pages or media.