Fcc Ni (revisited): Difference between revisions
No edit summary |
|||
(2 intermediate revisions by one other user not shown) | |||
Line 70: | Line 70: | ||
[[File:Fig fccNi revised 1.png|700px]] | [[File:Fig fccNi revised 1.png|700px]] | ||
*Proper initialization of magnetic moments is | *Proper initialization of magnetic moments is very important: | ||
**Too small initial magnetic moments will/may lead to nonmagnetic solution (by starting with an initial moment of 0.0 we arrive only to a magnetic of 0.002). | **Too small initial magnetic moments will/may lead to nonmagnetic solution (by starting with an initial moment of 0.0 we arrive only to a magnetic of 0.002). | ||
**Badly initialized calculations take longer to converge. | **Badly initialized calculations take longer to converge. | ||
Line 97: | Line 97: | ||
== Download == | == Download == | ||
[ | [[Media:4 1 Ni.tgz| 4_1_Ni.tgz]] | ||
{{Template:Magnetism}} | {{Template:Magnetism}} | ||
[[Category:Examples]] | [[Category:Examples]] |
Latest revision as of 09:29, 16 January 2020
Overview > fcc Ni (revisited) > NiO > NiO LSDA+U > Spin-orbit coupling in a Ni monolayer > Spin-orbit coupling in a Fe monolayer >constraining local magnetic moments > List of tutorials
Task
Calculation of the partial DOS of spin-polarized fcc Ni, a ferromagnet.
Input
POSCAR
fcc: -10.93 0.5 0.5 0.0 0.0 0.5 0.5 0.5 0.0 0.5 1 Cartesian 0 0 0
INCAR
SYSTEM = Ni fcc bulk ISTART = 0 ISPIN = 2 MAGMOM = 1.0 ISMEAR = -5 VOSKOWN = 1 LORBIT = 11
- Spin-polarized calculation with initial magnetic moment of 1 µB.
- Interpolation scheme of Vosko, Wilk and Nusair is used (see VOSKOWN=1).
- lm-decomposed DOSCAR is created.
- Tetrahedron method with Blöchl's corrections used for k-mesh integration.
KPOINTS
k-points 0 Gamma 11 11 11 0 0 0
Calculation
Collinear case
- The output for the magnetic moments in the OSZICAR should look like the following:
N E DAV: 1 0.139935173959E+02 0.13994E+02 -0.35801E+03 2338 0.828E+02 DAV: 2 -0.623612680591E+01 -0.20230E+02 -0.19281E+02 2282 0.123E+02 DAV: 3 -0.643764005251E+01 -0.20151E+00 -0.19906E+00 2536 0.140E+01 DAV: 4 -0.643786482872E+01 -0.22478E-03 -0.22442E-03 2344 0.459E-01 DAV: 5 -0.643786514671E+01 -0.31798E-06 -0.31687E-06 1832 0.173E-02 0.793E+00 ... DAV: 9 -0.545953126374E+01 0.48409E-02 -0.96206E-03 2946 0.839E-01 0.847E-02 DAV: 10 -0.545946513577E+01 0.66128E-04 -0.77007E-05 1364 0.126E-01 1 F= -.54594651E+01 E0= -.54594651E+01 d E =0.000000E+00 mag= 0.5781
- The l decomposed parts of the magnetic moment are written in the OUTCAR file:
magnetization (x)
# of ion s p p tot ---------------------------------------- 1 -0.007 -0.026 0.625 0.591
- The example output for the spin up and down DOS shows an exchange splitting of approximately 0.5 eV:
- Proper initialization of magnetic moments is very important:
- Too small initial magnetic moments will/may lead to nonmagnetic solution (by starting with an initial moment of 0.0 we arrive only to a magnetic of 0.002).
- Badly initialized calculations take longer to converge.
- Coexistence of low- and high spin solutions.
Noncollinear case
LNONCOLLINEAR = .TRUE. MAGMOM = 0.0 0.0 1.0
- The last three lines of the OSZICAR file using this parameter should look like the following:
DAV: 9 -0.546480633680E+01 0.41628E-02 -0.49402E-04 7532 0.330E-01 0.695E-02 DAV: 10 -0.546475032360E+01 0.56013E-04 -0.52286E-05 4328 0.446E-02 1 F= -.54647503E+01 E0= -.54647503E+01 d E =0.000000E+00 mag= 0.0000 0.0000 0.5792
- By using MAGMOM = 1.0 0.0 0.0 we get the following output:
DAV: 9 -0.546481348871E+01 0.41496E-02 -0.50294E-04 7548 0.330E-01 0.692E-02 DAV: 10 -0.546474438319E+01 0.69106E-04 -0.51451E-05 4288 0.432E-02 1 F= -.54647444E+01 E0= -.54647444E+01 d E =0.000000E+00 mag= 0.5792 0.0000 0.0000
- Analogously if we set MAGMOM = 0.0 1.0 0.0 we get the following output:
DAV: 9 -0.546481179459E+01 0.41515E-02 -0.50430E-04 7552 0.330E-01 0.692E-02 DAV: 10 -0.546474640011E+01 0.65394E-04 -0.51658E-05 4292 0.434E-02 1 F= -.54647464E+01 E0= -.54647464E+01 d E =0.000000E+00 mag= 0.0000 0.5792 0.0000