|
|
(32 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
| The local and semilocal [[exchange-correlation functionals]] depend locally on quantities like the electron density <math>n</math> or the kinetic-energy density <math>\tau</math>. Most of them can be classified into one of three main subcategories, depending on the variables on which <math>E_{\mathrm{xc}}</math> depends:
| |
| * Local density approximation (LDA):
| |
| :<math>
| |
| E_{\mathrm{xc}}^{\mathrm{LDA}}=\int\epsilon_{\mathrm{xc}}^{\mathrm{LDA}}(n)d^{3}r
| |
| </math>
| |
| leading to the exchange-correlation potential
| |
| :<math>
| |
| v_{\mathrm{xc}}^{\mathrm{LDA}} = \frac{\partial\epsilon_{\mathrm{xc}}^{\mathrm{LDA}}}{\partial n}
| |
| </math>
| |
|
| |
|
| * Generalized-gradient approximation (GGA):
| |
| :<math>
| |
| E_{\mathrm{xc}}^{\mathrm{GGA}}=\int\epsilon_{\mathrm{xc}}^{\mathrm{GGA}}(n,\nabla n)d^{3}r
| |
| </math>
| |
| leading to the exchange-correlation potential
| |
| :<math>
| |
| v_{\mathrm{xc}}^{\mathrm{LDA}} = \frac{\partial\epsilon_{\mathrm{xc}}^{\mathrm{GGA}}}{\partial n} -
| |
| \nabla\cdot\frac{\partial\epsilon_{\mathrm{xc}}^{\mathrm{GGA}}}{\partial\nabla n}
| |
| </math>
| |
|
| |
| * Meta-GGA:
| |
| :<math>
| |
| E_{\mathrm{xc}}^{\mathrm{MGGA}}=\int\epsilon_{\mathrm{xc}}^{\mathrm{MGGA}}(n,\nabla n,\nabla^{2}n,\tau)d^{3}r,
| |
| </math>
| |
|
| |
| Most of them are either of the generalized-gradient approximation (GGA) or of the meta-GGA.
| |
| :<math>E_{\mathrm{xc}}^{\mathrm{GGA}}=\int\epsilon_{\mathrm{xc}}^{\mathrm{GGA}}(n,\nabla n)d^{3}r</math>
| |
| : the functionals of the generalized-gradient approximation (GGA) and
| |
| that, in addition to the electron density <math>n</math> and the gradient <math>\nabla n</math>, depend also on
| |
| * the kinetic-energy density <math>\tau</math>, and/or
| |
| * the Laplacian of the electron density <math>\nabla^{2}n</math>.
| |
| Thus, the exchange-correlation energy can be written as
| |
| :<math>
| |
| E_{\mathrm{xc}}^{\mathrm{MGGA}}=\int\epsilon_{\mathrm{xc}}^{\mathrm{MGGA}}(n,\nabla n,\nabla^{2}n,\tau)d^{3}r,
| |
| </math>
| |
| which leads to the exchange-correlation potential having the form
| |
| :<math>
| |
| \hat{v}_{\mathrm{xc}}\psi_{i} =
| |
| \frac{\delta E_{\mathrm{xc}}^{\mathrm{MGGA}}}{\delta\psi_{i}^{*}}
| |
| = \left(\frac{\partial\epsilon_{\mathrm{xc}}^{\mathrm{MGGA}}}{\partial n} -
| |
| \nabla\cdot\frac{\partial\epsilon_{\mathrm{xc}}^{\mathrm{MGGA}}}{\partial\nabla n}
| |
| \right)\psi_{i}
| |
| -\frac{1}{2}\nabla\cdot\left(\frac{\partial\epsilon_{\mathrm{xc}}^{\mathrm{MGGA}}}{\partial \tau}
| |
| \nabla\psi_{i}\right) .
| |
| </math>
| |
| Although '''meta-GGAs''' are slightly more expensive than GGAs, they are still fast to evaluate and appropriate for very large systems. Furthermore, meta-GGAs can be more accurate than GGAs and more broadly applicable. Note that as in most other codes, '''meta-GGAs''' are implemented in VASP (see {{TAG|METAGGA}}) within the generalized KS scheme{{cite|yang:prb:2016|}}.
| |
|
| |
| == How to ==
| |
|
| |
| A '''meta-GGA functional''' can be used by specifying
| |
| * the {{TAG|METAGGA}} tag, or
| |
| * {{TAG|XC}} tag
| |
| in the {{FILE|INCAR}} file.
| |
|
| |
| How to do a [[band-structure calculation using meta-GGA functionals]].
| |
|
| |
| ----
| |
| [[Category:VASP|PAW]][[Category:Exchange-correlation functionals]]
| |