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The	Many-Body	Schrödinger	equation
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For	instance,	many-body	WF	storage	demands	are	prohibitive:

A	solution:	map	onto	“one-electron”	theory:

5	electrons	on	a	10×10×10	grid	~	10	PetaBytes !
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Hohenberg-Kohn-Sham	DFT
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Map	onto	“one-electron”	theory:

Total	energy	is	a	functional	of	the	density:

The	density	is	computed	using	the	one-electron	orbitals:

The	one-electron	orbitals	are	the	solutions	of	the	Kohn-Sham	equation:
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Exchange-Correlation

E
xc

[⇢] =??? V
xc

[⇢](r) =???

• Exchange-Correlation	functionals are	modeled	on	the	uniform-electron-gas	(UEG):	
The	correlation	energy	(and	potential)	has	been	calculated	by	means	of	Monte-
Carlo	methods	for	a	wide	range	of	densities,	and	has	been	parametrized to	yield	a	
density	functional.

• LDA:	we	simply	pretend	that	an	inhomogeneous	electronic	density	locally	behaves	
like	a	homogeneous	electron	gas.

• Many,	many,	many	different	functionals available:
LDA,	GGA,	meta-GGA,	van-der-Waals	functionals,	etc etc



An	N-electron	system:	N	=	O(1023)

N ⇥ (#grid points)

(#grid points)

N

 (r1, ..., rN ) ! { 1(r), 2(r), ..., N (r)}

Hohenberg-Kohn-Sham	DFT	takes	us	a	long	way:

Nice	for	atoms	and	molecules,	but	in	a	realistic	piece	of	solid	state	material	N=	O(1023)!



Translational	invariance:
Periodic	Boundary	Conditions

 nk(r+R) =  nk(r)e
ikR

 nk(r) = unk(r)e
ikr

unk(r+R) = unk(r)

Translational	invariance	implies:

and

All	states	are	labeled	by	Bloch	vector k and	the	band	index n:

• The	Bloch	vector	k is	usually	constrained	to	lie	within	the	first	Brillouin zone
of	the	reciprocal	space	lattice.

• The	band	index	n	is	of	the	order	if	the	number	of	electrons	per	unit	cell.



Reciprocal	space	&	the	first	Brillouin zone
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Sampling	the	1st BZ
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The	evaluation	of	many	key	quantities	involves	an	integral	over	the	1st BZ.
For	instance	the	charge	density:

We	exploit	the	fact	that	the	orbitals	at	Bloch	vectors	k that	are	close	together	are
almost	identical	and	approximate	the	integral	over	the	1st BZ	by	a	weighted	sum
over	a	discrete	set	of	k-points:

Fazit:	the	intractable	task	of	determining																									with	N=1023,	has	been
reduced	to	calculating														at	a	discrete	set	of	k-points	in	the	1st BZ,	for	a
number	of	bands	that	is	of	the	order	if	the	number	of	electrons	in	the	unit	cell.
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Idea:	equally	spaced	mesh	in	the	1st Brillouin zone

Example:	a	quadratic	2D	lattice
• q1=q2=4,	i.e.,	16	points	in	total
• Only	3	symmetry	inequivalent points:



Algorithm:

• Calculate	equally	spaced	mesh.
• Shift	the	mesh	if	desired.
• Apply	all	symmetry	operations	of	the	Bravais lattice	to	all	k-points.
• Extract	the	irreducible	k-points	(IBZ).
• Calculate	the	proper	weighting.

Common	meshes:	Two	different	choices	for	the	center	of	the	mesh.

• Centered	on	Γ
• Centered	around	Γ (can	break	the	symmetry!)	



!
!

shifted to  before after

symmetrization

• In	certain	cell	geometries	(e.g. hexagonal	cells)	even	meshes	break	the	symmetry.

• Symmetrization results	in	non-uniform	distributions	of	k-points.

• Γ-point	centered	meshes	preserve	the	symmetry.
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E[⇢, {R, Z}] = Ts[{ nk[⇢]}] + EH [⇢, {R, Z}] + E
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The	total	energy

The	kinetic	energy

The	Hartree energy

where

The	Kohn-Sham	equations

The	Hartree potential



A	plane	wave	basis	set
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All	cell-periodic	functions	are	expanded	in	plane	waves	(Fourier	analysis):

The	basis	set	includes	all	plane	waves	for	which
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Transformation	by	means	of	FFT	between	“real”	space	and	“reciprocal”	space:



Why	use	plane	waves?

• Historical	reason:	Many	elements	exhibit	a	band-structure	that	can
be	interpreted	in	a	free	electron	picture	(metallic	s	and	p	elements).
Pseudopotential theory	was	initially	developed	to	cope	with	these
elements	(pseudopotential perturbation	theory).

• Practical	reason:	The	total	energy	expressions	and	the	Hamiltonian
are	easy	to	implement.

• Computational	reason:	The	action	of	the	Hamiltonian	on	the	orbitals
can	be	efficiently	evaluated	using	FFTs.	
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The	charge	density
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The	action	of	the	Hamiltonian
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The	action

Using	the	convention

• Kinetic	energy:

• Local	potential:
• Exchange-correlation:	easily	obtained	in	real	space
• FFT	to	reciprocal	space
• Hartree potential:	solve	Poisson	eq.	in	reciprocal	space
• Add	all	contributions
• FFT	to	real	space
The	action
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The	action	of	the	local	potential
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The	Projector-Augmented-Wave	method
The	number	of	plane	waves	needed	to	describe
• tightly	bound	(spatially	strongly	localized)	states,
• and	rapid	oscillations	(nodal	features)	of	the	orbitals	near	the	nucleus
exceeds	any	practical	limit,	except	maybe	for	Li	and	H.

The	common	solution:
• Introduce	the	frozen	core	approximation:

Core	electrons	are	pre-calculated	in	an	atomic	environment	and	kept	frozen
in	the	course	of	the	remaining	calculations.

• Use	of	pseudopotentials instead	of	exact	potentials:
• Norm-conserving	pseudopotentials
• Ultra-soft	pseudopotentials
• The	Projector-Augmented-Wave	(PAW)	method

[P.	E.	Blöchl,	Phys.	Rev.	B 50,	17953	(1994)]
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Pseudopotentials:	cont.
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The	PAW	orbitals
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The	PAW	orbitals	(cont.)

| ni = | e ni+
X

i

(|�ii � |e�ii)hepi| e ni

(�1

2
�+ ve↵)|�ii = ✏i|�ii

|�ii ! |e�ii ve↵ ! eve↵ hepi|e�ji = �ij

| e ni• is	the	pseudo	(PS)	orbital,	expressed	in	a	plane	wave	basis	set

|�̃ii |p̃ii|�ii• ,							,	and									are	atom-centered	localized	functions

• The	all-electron	partial	waves	are	solutions	to	the	radial	scalar	relativistic
non-spinpolarized Schrödinger	equation:	

• A	pseudization procedure	yields:



The	PAW	orbitals	(cont.)
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• The	pseudo	partial	waves	obey:
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• with	the	so-called	PAW	strength	parameters	and	augmentation	charges:

The	all-electron	and	pseudo	eigenvalue	spectrum	is	identical!
All-electron	scattering	properties	are	reproduced	over	a	wide
energy-range.
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Si:	Troullier-Martins Si:	PAW



ve↵ [⇢v] = vH [⇢v] + vH [⇢Zc] + vxc[⇢v + ⇢c] ⇢v(r) =
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• 1st s-channel	in	Mn:	ε1
4s	“bound”	state

• 2nd s-channel	in	Mn:	ε2
“non-bound”	state

eve↵ [e⇢v] = vH [e⇢v] + vH [e⇢Zc] + vxc[e⇢v + e⇢c]

• And	we	use	the	frozen	core	approximation:



The	PAW	orbitals	(cont.)
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where	 clm✏ = hp̃lm✏| ̃ni

This	decomposition	in	three	contributions	can	be	achieved	for	all	relevant
quantities,	e.g. orbitals,	densities,	and	energies.	



The	kinetic	energy

Ekin =
X

n

fnh n|�
1

2
�| ni

| ni = | ̃ni+
X

i

(|�ii � |�̃ii)hp̃i| ̃ni
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Ẽ

�
X

site

X

(i,j)

⇢ijh�̃i|�
1

2
�|�̃ji

| {z }
Ẽ1
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For	instance	the	kinetic	energy:

Inserting	the	PAW	transformation	(where	i=lmε):

and	assuming	completeness	of	the	one-center	basis,	we	have

Where

are	the	one-center	occupancies,	or	on-site	density	matrix.



Local	operators
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To	any	(semi)-local	operator	A,	that	acts	on	the	true	all-electron	orbital,
the	PAW	method	associates	a	pseudo	operator:

that	acts	on	the	pseudo-orbital,	such	that		

For	instance	the	PS	operator	associated	with	the	density	operator	(									)|rihr|

and	the	density

Non-local	operators	are	more	complicated.



The	Hartree energy
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• The	PS	orbitals	do	not	have	the	same	norm as	the	AE	orbitals	inside	of
the	PAW	spheres.	

• To	correctly	describe	the	long-range	electrostatic	interactions	between	the
PAW	spheres,	a	soft	compensation charge	is	introduced	in	the	spheres	(like
in	the	FLAPW	method):

• This	way	the	Hartree energy	(a	non-local	operator!)	decomposes	in	the	same
manner	as	a	(semi)-local	operator:



The	PAW	total	energy
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The	same	three-way	decomposition	holds	for	the	total	energy

where



The	PAW	total	energy	(cont.)
• is	evaluated	on	a	regular	grid:

The	Kohn-Sham	functional	evaluated	in	a	plane	wave	basis	set
with	additional	compensation	charge	to	account	for	the	incorrect	norm
of	the	PS-orbitals	and	to	correctly	describe	long-range	electrostatics			

Ẽ

e⇢ =
X

n
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e ⇤
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PS	charge	density

Compensation	charges

Ẽ1 E1• and							are	evaluated	on	atom-centered	radial	logarithmic	grids:
The	Kohn-Sham	energies	evaluated	using	localized	basis	sets

These	terms	correct	for	the	difference	in	the	shape	of	the	all-electron
and	pseudo	orbitals:

)	AE	nodal	features	near	the	core
) Orthogonality between	core	and	valence	states

The	essence	of	the	PAW	method:	there	are	no	cross-terms	between
quantities	on	the	regular	grid	(PW	part)	and	the	quantities	on	the
radial	grids	(LCAO	part)!



The	PAW	total	energy	(cont.)
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The	PS	orbitals	(plane	waves!)	are	the	self-consistent	solutions	of

where

and

with

• The	PS	orbitals	are	the	variational quantity	of	the	PAW	method!
• If	the	partial	waves	constitute	a	complete	(enough)	basis	inside	the	PAW	spheres,

The	all-electron	orbitals	will	remain	orthogonal	to	the	core	states.



Accuracy	of	the	PAW	method

Δ-evaluation	(PAW	vs.	FLAPW)
K.	Lejaeghere et	al.,	Critical	Reviews	in	Solid	State	and	Materials	Sciences	39,1	(2014)



Accuracy	of	the	PAW	method	(cont.)
Subset	of	the	G2-1	testset of	small	molecules:	deviation	of	PAW	w.r.t.	GTO	(in	kcal/mol)



Electronic	minimization:
Reaching	the	groundstate

Direct	minimization of	the	DFT	functional	(e.g. Car-Parrinello):	start	with	a	set	of
trial	orbitals	(random	numbers)	and	minimize	the	energy	by	propagating	the	orbitals
along	the	gradient:

Gradient: Fn(r) =
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r2 + V e↵(r, { n(r
0)})� ✏n

◆
 n(r)

The	Self-Consistency-Cycle:	start	with	a	trial	density,	construct	the	corresponding
Hamiltonian.	Solve	it	to	obtain	a	set	of	orbitals:		

✓
� ~2
2me

r2 + V e↵(r, {⇢(r0)})
◆
 n(r) = ✏n n(r) n = 1, ..., Ne/2

These	orbitals	define	a	new	density,	that	defines	a	new	Hamiltonian,		…
iterate	to	self-consistency
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Direct	minimization	and	charge	sloshing

E

occupied

unoccupied

strong change in potential
π4  e / G

2
slowly varying charge

charge

potential

|gni = fn

⇣
1�

X

m

| mih m|
⌘
Ĥ| ni+

X

m

1

2
Hnm(fn � fm)| mi

Hnm = h m|Ĥ| ni

 n = ei(kF��k)r  m = ei(kF+�k)r

 0
n =  n +�s m  0

m =  m ��s n

�⇢(r) = 2�sRe ei2�k·r �VH(r) =
2�s 4⇡e2

|2�k|2 Re ei2�k·r

The	gradient	of	the	total	energy	with	respect	to	an	orbital	is	given	by:

where

Consider	two	states

and	a	small	sub-space	rotation
(2nd comp.	of	the	gradient):	

This	leads	to	a	long-wavelength	change	in	the	density	and	a	very	strong	change
in	the	electrostatic	potential	(charge	sloshing):

|�k| / 1/L �VH / L2 �s / 1/L2

Stable	step	size	Δs (for	a	simulation	box	with	largest	dimension	L):



The	Self-Consistency-Cycle	(cont.)

Two	sub-problems:

• Optimization	of
Iterative	Diagonalization
e.g. RMM-DIIS	or
Blocked	Davidson

• Construction	of
Density	Mixing
e.g. Broyden mixer

{ n}

⇢in



The	self-Consistency-Cycle

H = hG| ˆH[⇢]|G0i ! diagonalize H ! { i, ✏i} i = 1, .., NFFT

⇢0 ! H0 ! ⇢0 ! ⇢1 = f(⇢0, ⇢
0) ! H1 ! ...

⇢ = ⇢0

A	naïve	algorithm:	express	the	Hamilton	matrix	in	a	plane	wave	basis	and
diagonalize it:

Self-consistency-cycle:

Iterate	until:

BUT: we	do	not	need	NFFT eigenvectors	of	the	Hamiltonian	(at	a	cost	of	O(NFFT
3)).

Actually	we	only	the	Nb lowest	eigenstates of	H,	where	Nb is	of	the	order
of	the	number	of	electrons	per	unit	cell	(Nb <<	NFFT).

Solution:	use	iterative	matrix	diagonalization techniques	to	find	the	Nb lowest
Eigenvector	of	the	Hamiltonian:	RMM-DIIS,	blocked-Davidson,	etc.	



Key	ingredients:	Subspace	diagonalization
and	the	Residual	

X

m

H̄nmBmk =
X

m

✏appk S̄nmBmk

H̄nm = h n|Ĥ| mi S̄nm = h n|Ŝ| mi

| ̄ki =
X

m

Bmk| mi

|R( n)i = (Ĥ � ✏appŜ)| ni

• Rayleigh-Ritz:	diagonalization of	the	Nb x	Nb subspace

with

yields	Nb eigenvectors																																					with	eigenvalues	εapp.

These	eigenstates are	the	best	approximation	to	the	exact	Nb lowest
eigenstates of	H within	the	subspace	spanned	by	the	current	orbitals.

• The	Residual:

✏app =
h n|Ĥ| ni
h n|Ŝ| ni

(its	norm	is	measure	for	the	error	in	the	eigenvector)



Blocked-Davidson
• Take	a	subset	of	all	bands: { n|n = 1, .., N} ) { 1

k|k = 1, .., n1}

{ 1
k/g

1
k = K(H� ✏appS) 

1
k|k = 1, .., n1}

{ 2
k|k = 1, .., n1}

• Extend	this	subset	by	adding	the	(preconditioned)	residual	vectors
to	the	presently	considered	subspace:

• Rayleigh-Ritz	optimization	(“sub-space	rotation”)	in	the	2n1 dimensional
subspace	to	determine	the	n1 lowest	eigenvectors:

diag{ 1
k/g

1
k}

• Extend	subspace	with	the	residuals	of	 { 2
k}

{ 1
k/g

1
k/g

2
k = K(H� ✏appS) 

2
k|k = 1, .., n1}

• Rayleigh-Ritz	optimization		 ) { 3
k|k = 1, .., n1}

• Etc …

{ m
k |k = 1, .., n1} { n|n = 1, .., n1}

• The	optimized	set	replaces	the	original	subset:		

• Continue	with	next	subset:																																										,	etc,	…{ 1
k|k = n1 + 1, .., n2}

After	treating	all	bands:	Rayleigh-Ritz	optimization	of { n|n = 1, .., N}



Charge	density	mixing

R[⇢
in

] = ⇢
out

[⇢
in

]� ⇢
in

⇢
out

(~r) =
X

occupied

wkfnk| nk(~r)|2

R[⇢] = �J(⇢� ⇢sc) J = 1� � U|{z}
4⇡e2

q2

R[⇢
in

] = ⇢
out

[⇢
in

]� ⇢
in

= �J(⇢
in

� ⇢
sc

)

We	want	to	minimize	residual	vector

with

Linearization	of	the	residual	around	the	self-consistent	density
(linear	response	theory):	

⇢sc

where	J is	the	charge	dielectric	function.	
Provided	we	have	a	good	approximation	for	the	charge	dielectric	function,
minimization	of	the	residual	is	trivial:

⇢sc = ⇢in + J�1R[⇢in]



The	charge	dielectric	function

J�1 ⇡ G1
q = max(

q2AMIX

q2 + BMIX
, AMIN)

• Use	a	model	dielectric	function	that	is	a
good	initial	approximation	for	most
systems

• This	is	combined	with	a	convergence	accelerator

The	initial	dielectric	function	is	improved	using	the	information	accumulated
in	each	electronic	mixing	step.		



The	End

Thank	you!


